2,101 research outputs found

    An Efficient Sensitivity Analysis Method for Optimization of Vehicle Random Vibrations

    Get PDF
    AbstractAn efficient and accuracy sensitivity analysis method for optimal analysis of random vibration of vehicle-bridge coupled system is purposed. The pseudo-excitation method is used to transform random road surface roughness into a series of deterministic harmonic excitations, and then the precise integration method is adopted to compute vehicle/bridge system response. The pseudo-excitation method and the precise integration method are both accurate and efficient, so that the first and second order sensitivity information of the responses can be obtained very conveniently. Taking ride comfort as the objective function, an optimal analysis for a vehicle/bridge system is performed

    Small grid embeddings of 3-polytopes

    Full text link
    We introduce an algorithm that embeds a given 3-connected planar graph as a convex 3-polytope with integer coordinates. The size of the coordinates is bounded by O(27.55n)=O(188n)O(2^{7.55n})=O(188^{n}). If the graph contains a triangle we can bound the integer coordinates by O(24.82n)O(2^{4.82n}). If the graph contains a quadrilateral we can bound the integer coordinates by O(25.46n)O(2^{5.46n}). The crucial part of the algorithm is to find a convex plane embedding whose edges can be weighted such that the sum of the weighted edges, seen as vectors, cancel at every point. It is well known that this can be guaranteed for the interior vertices by applying a technique of Tutte. We show how to extend Tutte's ideas to construct a plane embedding where the weighted vector sums cancel also on the vertices of the boundary face

    Deflection and Rotation of CMEs from Active Region 11158

    Full text link
    Between the 13 and 16 of February 2011 a series of coronal mass ejections (CMEs) erupted from multiple polarity inversion lines within active region 11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS) flux rope model to determine the CME trajectory using both Solar Terrestrial Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model for nonradial CME dynamics driven by magnetic forces, to simulate the deflection and rotation of the seven CMEs. We find good agreement between the ForeCAT results and the reconstructed CME positions and orientations. The CME deflections range in magnitude between 10 degrees and 30 degrees. All CMEs deflect to the north but we find variations in the direction of the longitudinal deflection. The rotations range between 5\mydeg and 50\mydeg with both clockwise and counterclockwise rotations occurring. Three of the CMEs begin with initial positions within 2 degrees of one another. These three CMEs all deflect primarily northward, with some minor eastward deflection, and rotate counterclockwise. Their final positions and orientations, however, respectively differ by 20 degrees and 30 degrees. This variation in deflection and rotation results from differences in the CME expansion and radial propagation close to the Sun, as well as the CME mass. Ultimately, only one of these seven CMEs yielded discernible in situ signatures near Earth, despite the active region facing near Earth throughout the eruptions. We suggest that the differences in the deflection and rotation of the CMEs can explain whether each CME impacted or missed the Earth.Comment: 18 pages, 6 figures, accepted in Solar Physic

    An iterative agent bidding mechanism for responsive manufacturing

    Get PDF
    In today's market, the global competition has put manufacturing businesses in great pressures to respond rapidly to dynamic variations in demand patterns across products and changing product mixes. To achieve substantial responsiveness, the manufacturing activities associated with production planning and control must be integrated dynamically, efficiently and cost-effectively. This paper presents an iterative agent bidding mechanism, which performs dynamic integration of process planning and production scheduling to generate optimised process plans and schedules in response to dynamic changes in the market and production environment. The iterative bidding procedure is carried out based on currency-like metrics in which all operations (e.g. machining processes) to be performed are assigned with virtual currency values, and resource agents bid for the operations if the costs incurred for performing them are lower than the currency values. The currency values are adjusted iteratively and resource agents re-bid for the operations based on the new set of currency values until the total production cost is minimised. A simulated annealing optimisation technique is employed to optimise the currency values iteratively. The feasibility of the proposed methodology has been validated using a test case and results obtained have proven the method outperforming non-agent-based methods

    Dynamic and Postdeformation Recrystallization of Nuclear-Grade 316LN Stainless Steel

    No full text
    Nuclear-grade 316LN stainless steel was subjected to single and double compressions at 1173–1473 K and strain rates of 0.01–10 s⁻¹. The dynamic and postdeformation recrystallization was investigated through analysis of the stress–strain curves and microstructure evolution. The thermal deformation equation and the quantitative relationships between the critical stress for the initiation of dynamic recrystallization and the Zener–Hollomon parameter, Z, and between the dynamic recrystallization grain size D and Z were derived. Dynamic recrystallization developed through an ordinary mechanism at low Z values and through a necklace mechanism at high Z values, with a critical Z value of about 3.6 10¹⁶ . At 1273–1473 K, softening of 316LN stainless steel after deformation was characterized by an Avrami-type equation, where the Avrami parameter, n, has no appreciable temperature dependence, and an average value of n and the activation energy, Qrex , were 0.68 and 129 kJ/mol, respectively.Нержавеющая сталь 316LN ядерного класса подвергалась одно- и двукратному сжатию при 1173...1473 К и скорости деформации 0,01...10 с⁻¹. Динамическая и постдеформационная рекристаллизация изучалась с помощью анализа зависимости деформации от напряжения и развития микроструктуры. Были выведены уравнение тепловой деформации и количественные зависимости между критическим напряжением инициирования динамической рекристаллизации и параметром Зенера Холломона Z, а также между размером зерна D при динамической рекристаллизации и Z. Динамическая рекристаллизация развивалась по обычному механизму при низких значениях Z и по механизму ожерелья при высоких значениях Z, при критическом значении Z примерно 3 6 10¹⁶. При 1273...1473 К разупрочнение нержавеющей стали 316LN после деформирования описывается уравнением Аврами, где параметр Аврами n не проявляет выраженной температурной зависимости, а его среднее значение и энергия активации Qrex составляют 0,68 и 129 кДж/моль соответственно

    Solitary wave solution to the generalized nonlinear Schrodinger equation for dispersive permittivity and permeability

    Full text link
    We present a solitary wave solution of the generalized nonlinear Schrodinger equation for dispersive permittivity and permeability using a scaling transformation and coupled amplitude-phase formulation. We have considered the third-order dispersion effect (TOD) into our model and show that soliton shift may be suppressed in a negative index material by a judicious choice of the TOD and self-steepening parameter.Comment: 6 page

    Recognizing basal cell carcinoma on smartphone‐captured digital histopathology images with a deep neural network

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154530/1/bjd18026.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154530/2/bjd18026_am.pd

    Alpha decay and proton-neutron correlations

    Full text link
    We study the influence of proton-neutron (p-n) correlations on alpha-decay width. It is shown from the analysis of alpha Q values that the p-n correlations increase the penetration of the alpha particle through the Coulomb barrier in the treatment following Gamow's formalism, and enlarges the total alpha-decay width significantly. In particular, the isoscalar p-n interactions play an essential role in enlarging the alpha-decay width. The so-called "alpha-condensate" in Z > 84 isotopes are related to the strong p-n correlations.Comment: 5 pages, 6 figures, accepted for publication in Phys. Rev. C (R.C.

    Interface engineering of graphene/copper matrix composites decorated with tungsten carbide for enhanced physico-mechanical properties

    Get PDF
    For metal matrix composites (MMCs), introduction of low-dimensional nano-carbon materials (NCMs) into three dimensional metallic matrix is commonly applied to enhance mechanical and physical properties of metals and thus significantly extend their wide range applications. However, the interfaces between the NCMs and metal matrix are always a major issue for achieving the best enhancement effects. In this paper, we investigated interfacial structures of graphene nanoplates (GNPs) reinforced Cu matrix composites fabricated using a simple and industrially scalable strategy, through integration of interface engineering design methodology and a spark plasma sintering (SPS) process. We then systematically evaluated their physico-mechanical properties, interfacial characteristics and strengthening mechanisms. The in-situ formed WxCy nano-layers and carbide nanoparticles on the surfaces of GNPs and near the interfaces of Cu grains promote strong interfacial bonding and improves the cohesive strength of Cu based nanocomposites. The GNPs-W/Cu composites show a good balance between strength and electrical conductivity. Their 0.2% yield strength and ultimate tensile strength have been improved up to 239.13% (112.73%) and 197.76% (72.51%), respectively, when compared with those of pure copper (or GNPs/Cu composites). Electrical conductivity of GNPs-W/Cu composites shows no apparent changes after the addition of the GNPs. The dislocation strengthening, refinement strengthening and load transfer strengthening were achieved simultaneously through the engineered interfaces in GNPs-W/Cu matrix composites. This work has provided a new strategy to fabricate high-performance NCMs enhanced MMCs by using the interface engineering methodology

    Ab initio Calculations of Multilayer Relaxations of Stepped Cu Surfaces

    Full text link
    We present trends in the multilayer relaxations of several vicinals of Cu(100) and Cu(111) of varying terrace widths and geometry. The electronic structure calculations are based on density functional theory in the local density approximation with norm-conserving, non-local pseudopotentials in the mixed basis representation. While relaxations continue for several layers, the major effect concentrates near the step and corner atoms. On all surfaces the step atoms contract inwards, in agreement with experimental findings. Additionally, the corner atoms move outwards and the atoms in the adjacent chain undergo large inward relaxation. Correspondingly, the largest contraction (4%) is in the bond length between the step atom and its bulk nearest neighbor (BNN), while that between the corner atom and BNN is somewhat enlarged. The surface atoms also display changes in registry of upto 1.5%. Our results are in general in good agreement with LEED data including the controversial case of Cu(511). Subtle differences are found with results obtained from semi-empirical potentials.Comment: 21 pages and 3 figure
    corecore