72 research outputs found

    The low-lying excitations of polydiacetylene

    Full text link
    The Pariser-Parr-Pople Hamiltonian is used to calculate and identify the nature of the low-lying vertical transition energies of polydiacetylene. The model is solved using the density matrix renormalisation group method for a fixed acetylenic geometry for chains of up to 102 atoms. The non-linear optical properties of polydiacetylene are considered, which are determined by the third-order susceptibility. The experimental 1Bu data of Giesa and Schultz are used as the geometric model for the calculation. For short chains, the calculated E(1Bu) agrees with the experimental value, within solvation effects (ca. 0.3 eV). The charge gap is used to characterise bound and unbound states. The nBu is above the charge gap and hence a continuum state; the 1Bu, 2Ag and mAg are not and hence are bound excitons. For large chain lengths, the nBu tends towards the charge gap as expected, strongly suggesting that the nBu is the conduction band edge. The conduction band edge for PDA is agreed in the literature to be ca. 3.0 eV. Accounting for the strong polarisation effects of the medium and polaron formation gives our calculated E(nBu) ca. 3.6 eV, with an exciton binding energy of ca. 1.0 eV. The 2Ag state is found to be above the 1Bu, which does not agree with relaxed transition experimental data. However, this could be resolved by including explicit lattice relaxation in the Pariser- Parr-Pople-Peierls model. Particle-hole separation data further suggest that the 1Bu, 2Ag and mAg are bound excitons, and that the nBu is an unbound exciton.Comment: LaTeX, 23 pages, 4 postscript tables and 8 postscript figure

    New Results for the Correlation Functions of the Ising Model and the Transverse Ising Chain

    Full text link
    In this paper we show how an infinite system of coupled Toda-type nonlinear differential equations derived by one of us can be used efficiently to calculate the time-dependent pair-correlations in the Ising chain in a transverse field. The results are seen to match extremely well long large-time asymptotic expansions newly derived here. For our initial conditions we use new long asymptotic expansions for the equal-time pair correlation functions of the transverse Ising chain, extending an old result of T.T. Wu for the 2d Ising model. Using this one can also study the equal-time wavevector-dependent correlation function of the quantum chain, a.k.a. the q-dependent diagonal susceptibility in the 2d Ising model, in great detail with very little computational effort.Comment: LaTeX 2e, 31 pages, 8 figures (16 eps files). vs2: Two references added and minor changes of style. vs3: Corrections made and reference adde

    Stellar evolution and modelling stars

    Full text link
    In this chapter I give an overall description of the structure and evolution of stars of different masses, and review the main ingredients included in state-of-the-art calculations aiming at reproducing observational features. I give particular emphasis to processes where large uncertainties still exist as they have strong impact on stellar properties derived from large compilations of tracks and isochrones, and are therefore of fundamental importance in many fields of astrophysics.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci

    Get PDF
    Background Previous studies using candidate gene and genome-wide approaches have identified epigenetic changes in DNA methylation (DNAm) associated with posttraumatic stress disorder (PTSD). Methods In this study, we performed an EWAS of PTSD in a cohort of Veterans (n = 378 lifetime PTSD cases and 135 controls) from the Translational Research Center for TBI and Stress Disorders (TRACTS) cohort assessed using the Illumina EPIC Methylation BeadChip which assesses DNAm at more than 850,000 sites throughout the genome. Our model included covariates for ancestry, cell heterogeneity, sex, age, and a smoking score based on DNAm at 39 smoking-associated CpGs. We also examined in EPIC-based DNAm data generated from pre-frontal cortex (PFC) tissue from the National PTSD Brain Bank (n = 72). Results The analysis of blood samples yielded one genome-wide significant association with PTSD at cg19534438 in the gene G0S2 (p = 1.19 x 10(-7), p(adj) = 0.048). This association was replicated in an independent PGC-PTSD-EWAS consortium meta-analysis of military cohorts (p = 0.0024). We also observed association with the smoking-related locus cg05575921 in AHRR despite inclusion of a methylation-based smoking score covariate (p = 9.16 x 10(-6)), which replicates a previously observed PGC-PTSD-EWAS association (Smith et al. 2019), and yields evidence consistent with a smoking-independent effect. The top 100 EWAS loci were then examined in the PFC data. One of the blood-based PTSD loci, cg04130728 in CHST11, which was in the top 10 loci in blood, but which was not genome-wide significant, was significantly associated with PTSD in brain tissue (in blood p = 1.19 x 10(-5), p(adj) = 0.60, in brain, p = 0.00032 with the same direction of effect). Gene set enrichment analysis of the top 500 EWAS loci yielded several significant overlapping GO terms involved in pathogen response, including "Response to lipopolysaccharide" (p = 6.97 x 10(-6), p(adj) = 0.042). Conclusions The cross replication observed in independent cohorts is evidence that DNA methylation in peripheral tissue can yield consistent and replicable PTSD associations, and our results also suggest that that some PTSD associations observed in peripheral tissue may mirror associations in the brain.Stress-related psychiatric disorders across the life spa

    Recent Insecticide Experiments in Illinois with Lubricating Oil Emulsions

    Get PDF
    From 1919 to 1922 inclusive, the San Jose scale caused more damage in southern Illinois than in any equal period since it was first established in this state. Following the work of Dr. Forbes and his assistants in 1900, 1901, and 1902, liquid lime-sulfur had been considered the standard remedy for San Jose scale control. Previous to 1919, it had not failed to give a satisfactory commercial control where thoroughly applied at dilutions of from 1 to 6, to 1 to 8. During 1920 and 1921, some of the best and most careful orchardists in southern Illinois lost trees from scale although these trees had been thoroughly sprayed with lime sulfur. In some instances the failure to control with it could be accounted for by the fact that the trees had been poorly sprayed, or an insufficient amount of material had been applied. In other cases, however, the applications had been made as thoroughly as seemed possible and enough material had been put on to cover the trees thoroughly. During the years mentioned above, a series of mild winters following warm late falls had allowed the scale to increase at an unusual rate, so that trees having a small amount of live scale remaining upon them in spring were heavily infested by fall. Because of the failure of lime sulfur to give a satisfactory control of scale, a series of experiments to test other scalecides was made by the Natural History Survey during the winter of 1922.published or submitted for publicationis peer reviewe

    Glutathione And Related Enzymes: Biological Roles And Importance In Pathological Processes [glutationa E Enzimas Relacionadas: Papel Biológico E Importância Em Processos Patológicos]

    No full text
    Glutathione (GSH) and related enzymes are pivotal for the normal functioning of several important biological processes. In this review we discuss the biosynthesis and the catalytic cycles of glutathione as well as the major GSH-related enzymes. We also present how glutathione and enzymes are involved in cancer and the chromatographic and non-chromatographic methods used to analyze glutathione and/or its derivatives.31511701179Joseph, P.D., Mannervik, B., Ortiz de Montellano, P., (1997) Molecular Toxicology, pp. 152-186. , 1st ed, Oxford University Press: New YorkChambres, I., Harrison, P.R., (1987) Trends Biochem Sci, 12, p. 255Hatfield, D., Diamond, A., (1993) Trends Genet, 9, p. 69Cohen, G., Hochstein, P., (1963) Biochemistry, 2, p. 1420Carsol, M.A., Pouliquen, I., Lesgards, G., Marchi, G., Puigserver, A., Santimoni, M., (1997) Eur. J. Biochem, 247, p. 248Lehmann, C., Wollenberger, U., Brigelius-Flohé, R., Scheller, F.W., (1998) J. Electroanal. Chem, 455, p. 259Kanzok, S.M., Schirmer, R.H., Turbachova, I., Iozef, R., Becker, K., (2000) J. Mol. Biol, 275, p. 40180Rahlfs, S., Schirmer, R.H., Becker, K., (2002) Cell. Mol. Life Sci, 59, p. 1024Rahlfs, S., Schirmer, R.H., Becker, K., Nickel, C., (2003) Biol. Chem, 348, p. 551Andricopulo, A.D., Akoachere, M.B., Krogh, R., Nickel, C., McLeish, M.J., Kenyon, G.L., Arscott, L.D., Becker, K., (2006) Bioorg. Med. Chem. Lett, 16, p. 2283Sarma, G.N., Savvides, S.N., Becker, K., Schrimer, M., Schrimer, R.H., Karplus, P.A., (2003) J. Mol. Biol, 328, p. 893Karplus, P.A., Pai, E.F., Schulz, G.E., (1989) Eur. J. Biochem, 178, p. 693Savvides, S.N., Karplus, P.A., (1996) J. Biol. Chem, 271, p. 8101Becker, K., Christopherson, R.I., Cowden, W.B., Hunt, N.H., Schirmer, R.H., (1990) Biochem. Pharmacol, 39, p. 59Schonleben-Janas, A., Kirsch, P., Mittl, P.R., Schirmer, R.H., Krauth-Siegel, R.L., (1996) J. Med. Chem, 39, p. 1549Farber, P.M., Arscott, L.D., Williams Jr, C.H., Becker, K., Schirmer, R.H., (1998) FEBS Lett, 422, p. 311Boese, M., Keese, M.A., Becker, K., Busse, R., Mulsch, A., (1997) J. Biol. Chem, 272, p. 21767Becker, K., Gui, M., Schirmer, R.H., (1995) Eur. J. Biochem, 234, p. 472Fitzgerald, G.B., Bauman, C., Hussoin, M.S., Vick, M.M., (1991) Biochem. Pharmacol, 41, p. 185Jochheim, C.M., Baillie, T.A., (1994) Biochem. Pharmacol, 47, p. 1197Kassahum, K., Jochheim, C.M., Baillie, T.A., (1994) Biochem. Pharmacol, 47, p. 587Guan, X., Hoffman, B.N., McFarland, D.C., Gilkerson, K.K., Dwivedi, C., Erickson, A.K., Bebensee, S., Pellegrini, J., (2002) Drug Metab. Dispos, 30, p. 331Karplus, P.A., Krauth-Siegel, R.L., Schirmer, R.H., Schulz, G.E., (1998) Eur. J. Biochem, 171, p. 193Biot, C., Delarue, S.H., Davioud-Charvet, E., Schwobel, B., Boehme, C.S.C., Mussigbordt, A., Maes, L., Becker, K., (2001) J. Med. Chem, 44, p. 4266Halliwell, B., (1974) New Physiol, 73, p. 1075. , e referências citadasBiot, C., Bauer, H., Schirmer, R.H., Davioud-Charvet, E., (2004) J. Med. Chem, 47, p. 5972Seefeldt, T., Dwivedi, C., Peitz, G., Herman, J., Carlson, L., Zhang, Z., Guan, X., (2005) J. Med. Chem, 48, p. 5224Hayes, J.D., Flanagan, J.U., Jowsey, I.R., (2005) Annu. Rev. Pharmacol. Toxicol, 45, p. 51Danielson, U.H., Mannervik, B., (1985) Biochem. J, 231, p. 263Keen, J.H., Jakoby, W.B., (1978) J. Biol. Chem, 253, p. 5654Armstrong, R.N., (1997) Chem. Res. Toxicol, 10, p. 2Sheehan, D., Meade, G., Foley, V.W., Dowd, C.A., (2001) Biochem. J, 360, p. 1Armstrong, R.N., (2000) Biochemistry, 39, p. 13625Mannervik, B.Awasthi, Y. C.Board, P. G.Hayes, J. D.Di Ilio, C.Listowsky, I.Morgenstern, R.Muramatsu, M.Pearson, W. R.Pickett, C. B.Sato, K.Widersten, M.Wolf, C. R.Biochem. J. 1992, 282, 305Hayes, J.D., Pulford, D.J., (1995) Crit. Rev. Biochem. Mol. Biol, 30, p. 445Dulhunty, A.Gage, P.Curtis, S.Chelvanayagam, G.Board, P.J. Biol. Chem. 2001, 276, 3319Morel, F., Rauch, C., Petit, E., Piton, A., Theret, N., Coles, B., Guillouzo, A., (2004) J. Biol. Chem, 279, p. 16246Jakobsson, P.-J., Morgenstern, R., Mancini, J.A., Ford-Hutchinson, A., Persson, B., (1999) Protein Sci, 8, p. 689Knox, W.E., Edwards, S.W., (1955) J. Biol. Chem, 216, p. 489Chen, H., Juchau, M.R., (1998) Biochem. J, 336, p. 223Johansson, A.-S., Mannervik, B., (2001) J. Biol. Chem, 276, p. 33061Marnett, L.J., Riggins, J.N., West, J.D., (2003) J. Clin. Invest, 111, p. 583Hurst, R., Bao, Y., Jemth, P., Mannervik, B., Williamson, G., (1998) Biochem. J, 332, p. 97Prabhu, K.S., Reddy, P.V., Jones, E.C., Liken, A.D., Reddy, C.C., (2004) Arch. Biochem. Biophys, 424, p. 72Heijn, M., Oude Efferink, R.P.J., Jansen, P.M.L., (1992) Am. J. Physiol, 262, pp. C104Saxena, M., Singhal, S.S., Awasthi, S., Singh, S.V., Labelle, E.F., Zimniak, P., Awasthi, Y.C., (1992) Arch. Biochem. Biophys, 298, p. 231Kavallaris, M., (1997) Anticancer Drug, 8, p. 17. , e referências citadasGuengerich, F.P., (1990) CRC Crit. Rev. Biochem. Mol. Biol, 25, p. 97van Bladeren, P.J., (2000) Chem. Biol. Interact, 129, p. 61Dringen, R., (2000) Progr. Neurobiol, 129, p. 649Landi, S., (2000) Mutat. Res, 463, p. 247Borst, P., Zelcer, N., van de Wetering, K., Poolman, B., (2006) FEBS Lett, 580, p. 1085Marchand, D.H., Remmel, R.P., Abdel-Monem, M.M., (1988) Drug Metab. Dispos, 16, p. 85Ritter, C.A., Sperker, B., Grube, M., Dressel, D., Kunert-Keil, C., Kroemer, H.K., (2002) Br. J. Pharmacol, 137, p. 1100Buckpitt, A.R., Castagnoli Jr., N., Nelson, S.D., Jones, A.D., Bahnson, L.S., (1987) Drug Metab. Dispos, 15, p. 491Todaka, T., Ishida, T., Kita, H., Narimatsu, S., Yamano, S., (2005) Biol. Pharm. Bull, 28, p. 1275Ishida, T., Kumagai, Y., Ikeda, Y., Ito, K., Yano, M., Toki, S., Mihashi, K., Hachiyama, S., (1989) Drug Metab. Dispos, 17, p. 77Correia, M.A., Krowech, G., Caldera-Munoz, P., Yee, S.L., Straub, K., Castagnoli Jr., N., (1984) Chem. Biol. Interact, 51, p. 13Mitchell, J.R., Jollow, D.J., Potter, W.Z., Gillette, J.R., Brodie, B.B., (1973) J. Pharmacol. Exp. Ther, 187, p. 211Potter, W.Z., Davis, D.C., Mitchell, J.R., Jollow, D.J., Gillette, J.R., Brodie, B.B., (1973) J. Pharmacol. Exp. Ther, 187, p. 203Potter, D.W., Hinson, J.A., (1987) J. Biol.Chem, 262, p. 974Hamilton, D.S., Zhang, X., Ding, Z., Hubatsch, I., Mannervik, B., Houk, K.N., Ganem, B., Creighton, D.J., (2003) J. Am. Chem. Soc, 125, p. 15049Lien, S., Larsson, A.-K., Mannervik, B., (2002) Biochem. Pharmacol, 63, p. 191Abel, E.L., Bammler, T.K., Eaton, D.L., (2004) Toxicol. Sci, 79, p. 224Abel, E.L., Opp, S.M., Verlinde, C.L.M.J., Bammler, T.K., Eaton, D.L., (2004) Toxicol. Sci, 80, p. 230Kelly, V.P., Ellis, E.M., Manson, M.M., Chanas, S.A., Moffat, G.J., McLeod, R., Judah, D.J., Hayes, J.D., (2000) Cancer Res, 60, p. 957Sundberg, K., Widersten, M., Seidel, A., Mannervik, B., Jernström, B., (1997) Chem. Res. Toxicol, 10, p. 1221Hu, X., Pal, A., Krzeminski, J., Amin, S., Awasthi, Y.C., Zimniak, P., Singh, S., (1998) Carcinogenesis, 19, p. 1685Dreij, K., Sundberg, K., Johansson, A.-S., Nordling, E., Seidel, A., Persson, B., Mannervik, B., Jernström, B., (2002) Chem. Res. Toxicol, 15, p. 825Coles, B., Nowell, S.A., MacLeod, S.L., Sweeney, C., Lang, N.P., Kadlubar, F.F., (2001) Mutat. Res, 482, p. 3Suzuki, T., Nishio, K., Tanabe, S., (2001) Curr. Drug Metab, 2, p. 367Hinchman, C.A., Matsumoto, H., Simmons, T.W., Ballatori, N., (1991) J. Biol. Chem, 266, p. 22179Boyland, E., Chasseaud, L.F., (1969) Adv. Enzymol. Relat. Areas Mol. Biol, 32, p. 173Xu, K., Thormalley, P.J., (2001) Biochem. Pharmacol, 61, p. 165Thier, R., Taylor, J.B., Pemble, S.E., Humphreys, W.G., Persmark, M., Ketterer, B., Guengerich, F.P., (1993) Proc.Natl. Acad. Sci. U.S.A, 90, p. 8576Wheeler, J.B., Stourman, N.V., Thier, R., Dommermuth, A., Vuilleumier, S., Rose, J.A., Armstrong, R.N., Guengerich, F.P., (2001) Chem. Res. Toxicol, 14, p. 1118Guengerich, F.P., McCormick, W.A., Wheeler, J.B., (2003) Chem. Res. Toxicol, 16, p. 1493Lyttle, M.H., Satyam, A., Hocker, M.D., Bauer, K.E., Caldwell, C.G., Hui, H.C., Morgan, A.S., Kauvar, L.M., (1994) J. Med. Chem, 37, p. 1501Burek, J.D., Nitschke, K.D., Bell, T.J., Wackerle, D.L., Childs, R.C., Beyer, J.E., Dittender, D.A., McKenna, M.J., (1984) Fundam. Appl. Toxicol, 4, p. 30Nitschke, K.D., Burek, J.D., Bell, T.J., Kociba, R.J., Rampy, L.W., McKenna, M.J., (1988) Fundam. Appl. Toxicol, 11, p. 48Mainwaring, G.W., Nash, J., Davidson, M., Green, T., (1996) Biochem. J, 314, p. 445Sherratt, P.J., Pulford, D.J., Harrison, D.J., Green, T., Hayes, J.D., (1997) Biochem. J, 326, p. 837Böhme, V.H., Fischer, H., Frank, R., (1949) Ann. Chem, 563, p. 54Stourman, N.V., Rose, J.A., Vuilleumier, S., Armstrong, R.N., (2003) Biochemistry, 42, p. 11048Blocki, F.A., Logan, M.S.P., Baoli, C., Wackett, L.P., (1994) J. Biol. Chem, 269, p. 8826Tew, K.D., (2005) Exp. Opin. Invest. Drugs, 14, p. 1047Liscovitc, M., Lavie, Y., (2002) Drugs, 5, p. 4Deeley, R.G., Cole, S.P.C., (2006) FEBS Lett, 580, p. 1103Tew, K.D., Bomber, A.M., Hoffman, S.J., (1988) Cancer Res, 48, p. 3622Smith, M.T., Evans, C.G., Doane-Setzer, P., Castro, V.M., Tahir, M.K., Mannervik, B., (1989) Cancer Res, 49, p. 2621Clapper, M.L., Hoffman, S.J., Tew, K.D., (1991) Biochim. Biophys. Acta, 1096, p. 209Hansson, J., Berhane, K., Castro, V.M., Jungnelius, U., Mannervik, B., Ringborg, U., (1991) Cancer Res, 51, p. 194Meister, A., (1988) J. Biol. Chem, 269, p. 1705Kikuchi, Y., Hirata, J., Yamamoto, K., Ishii, K., Kita, T., Kudoh, K., Tode, T., Kuwano, M., (1997) Jpn.J. Cancer Res, 88, p. 213Nakagawa, K., Yokota, J., Wada, M., Sasaki, Y., Fujiwara, Y., Sakai, M., Muramatsu, M., Saijo, N., (1988) Jpn. J. Cancer Res, 79, p. 301Kurokawa, H., Nishio, K., Ishida, T., Arioka, H., Fukuoka, K., Nomoto, T., Fukumoto, H., Saijo, N., (1997) Jpn. J. Cancer Res, 88, p. 108Howie, A., Forrester, L., Glancy, M., Schlager, J., Powis, G., Beckett, G., Hayes, J., Wolf, C., (1990) Carcinogenesis, 11, p. 451Campbell, J.A., Corrigall, A.V., Guy, A., Kirsch, R.E., (1991) Cancer, 67, p. 1608Rosen, L.S., Laxa, B., Boulos, L., Wiggins, L., Keck, J.G., Jameson, A.J., Parra, R., Brown, G.L., (2004) Clin. Cancer Res, 10, p. 3689Shea, T.C., Kelley, S.L., Henner, W.D., (1988) Cancer Res, 48, p. 527Schisselbauer, J.C., Silber, R., Papadopoulos, E., Abrams, K., LaCreta, F.P., Tew, K.D., (1990) Cancer Res, 50, p. 3562Waxman, D.J., (1990) Cancer Res, 50, p. 6449Cowan, K.H., Batist, G., Tulpule, A., Sinha, B.K., Myers, C.E., (1986) Proc. Natl. Acad. Sci. U.S.A, 83, p. 9328Robson, C.N., Lewis, A.D., Wolf, C.R., Hayes, J.D., Hall, A., Proctor, S.J., Harris, A.L., Hickson, I.D., (1987) Cancer Res, 47, p. 6022McGrown, A., Fox, B., (1986) Cancer Chemother. Pharmacol, 17, p. 223Teicher, B.A., Holden, S.A., Kelley, M.J., Shea, T.C., Cucchi, C.A., Rosowsky, A., Henner, W.D., Frei, E., (1987) Cancer Res, 47, p. 388Rosen, L.S., Brown, J., Laxa, B., Boulos, L., Reiswig, L., Henner, W.D., Lum, R.T., Brown, G.L., (2003) Clin. Cancer Res, 9, p. 1628Ji, X., Zhang, P., Armstrong, R., Gilliland, G., (1992) Biochemistry, 31, p. 10169Reinemer, P., Dirr, H., Ladenstein, R., Huber, R., Lo Bello, M., Federici, G., Parker, M., (1992) J. Mol. Biol, 227, p. 214Kavanagh, J.J., Gershenson, D.M., Choi, H., Lewis, L., Patel, K., Brown, G.L., Garcia, A., Spriggs, D.R., (2005) Int. J. Gynecol. Cancer, 15, p. 593Camera, E., Picardo, M., (2002) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 781, p. 181Luo, J.-L., Hammarqvist, I.A., Cotgreave, C., Lind, K., Andersson, J., Wernerman, J., (1995) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 670, p. 29Anderson, D.J., Guo, B., Xu, Y., Ng, L.M., (1997) Anal. Chem, 69, pp. 165RLenton, K.J., Therriault, J.R., Wagner, J.R., (1999) Anal. Biochem, 274, p. 125Senft, A.P., Dalton, T.P., Shertzer, H.G., (2000) Anal. Biochem, 280, p. 80Jones, D.P., Carlson, J.L., Samiec, P.S., Sternberg, P.J., Mody, V.C.J., Red, R.L., Brown, L.A.S., (1998) Clin. Chim. Acta, 275, p. 175Yoshida, T., (1996) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 678, p. 157Ivanov, A.R., Nazimov, I.V., Baratova, L., (2000) J. Chromatogr., A, 870, p. 433Melnik, S., Pogribny, N., Hine, R.J., James, S.J., (1999) J. Nutr. Biochem, 10, p. 490Muscari, C., Pappagallo, M., Ferrari, D., Giordano, E., Capanni, C., Caldarera, C.M., Guarnieri, J., (1998) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 707, p. 301Davey, M.W., Bauw, G., Van Montagu, M., (1997) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 697, p. 269Caussé, E., Issac, C., Malatray, P., Bayle, C., Valdiguié, P., Salvayre, R., Couderc, F., (2000) J. Chromatogr., A, 895, p. 173Camera, E., Rinaldi, M., Briganti, S., Picardo, M., Fanali, S., (2001) J. Chromatogr,. B: Anal. Technol. Biomed. Life Sci, 757, p. 69Loughlin, A.F., Skiles, G.L., Alberts, D.W., Schaefer, W.H., (2001) J. Pharm. Biomed. Anal, 26, p. 131Santori, G., Domenicotti, G., Bellocchio, A., Pronzato, M.A., Marinari, U.M., Cottalasso, D., (1997) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 695, p. 427Smith, I.K., Vierheller, T.L., Thorne, C.A., (1988) Anal. Biochem, 175, p. 408Molnar-Perl, I., (2001) J. Chromatogr., A, 913, p. 283Yan, C.C., Huxtable, R.J., (1995) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 672, p. 217Lada, M.W., Kennedy, R.T., (1997) J. Neurosci. Methods, 72, p. 153Vina, J., Sastre, M., Asensi, L., Packer, L., (1995) Methods Enzymol, 251, p. 237Liang, S.-C., Wang, H., Zhang, Z.-M., Zhang, X., Zhang, H.-S., (2002) Anal. Chim. Acta, 451, p. 211Nascimento, V.B., Angnes, L., (1998) Quim. Nova, 21, p. 614Junior, L.R., Höeher, N.F., Vellasco, A.P., Kubota, L.T., (2001) Quim. Nova, 24, p. 112Arttmangkul, S., Bhalgat, M.K., Haugland, R.P., Diwu, Z., Liu, J., Kalubert, D.H., (1999) Anal. Biochem, 269, p. 410Manna, L., Valvo, L., Betto, P., (1999) J. Chromatogr., A, 846, p. 59Rose, R.C., Bode, A.M., (1995) Biochem. J, 306, p. 101Lakritz, J., Plopper, C.G., Buckpitt, A.R., (1997) Anal. Biochem, 247, p. 63Lyons, J., Rauh-Pfeiffer, A., Yu, Y.M., Lu, X.-M., Zurakowski, D., Tompkins, R.G., Ajami, A.M., Castillo, L., (2000) Proc. Natl. Acad. Sci. U.S.A, 97, p. 5071Capitan, P., Malmezat, T., Breuillé, D., Obled, C., (1999) J. Chromatogr,. B: Anal. Technol. Biomed. Life Sci, 732, p. 127Lehmann, R., Voelter, W., Liebich, H.M., (1997) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 687, p.
    corecore