454 research outputs found
A Measurement of Parity-Violating Neutron Transmission in Xenon
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Constraining spacetime nonmetricity with neutron spin rotation in liquid 4He
General spacetime nonmetricity coupled to neutrons is studied. In this context, it is shown that certain nonmetricity components can generate a rotation of the neutron's spin. Available data on this effect obtained from slow-neutron propagation in liquid helium are used to constrain isotropic nonmetricity components at the level of GeV. These results represent the first limit on the nonmetricity parameter as well as the first measurement of nonmetricity inside matter.DOE/DE-SC0010120NSF/PHY-1614545IU Center for Spacetime SymmetriesNational Science Foundation of China/11605056Chinese Scholarship CouncilAlexander von Humboldt Foundatio
A Current Mode Detector Array for Gamma-Ray Asymmetry Measurements
We have built a CsI(Tl) gamma-ray detector array for the NPDGamma experiment
to search for a small parity-violating directional asymmetry in the angular
distribution of 2.2 MeV gamma-rays from the capture of polarized cold neutrons
by protons with a sensitivity of several ppb. The weak pion-nucleon coupling
constant can be determined from this asymmetry. The small size of the asymmetry
requires a high cold neutron flux, control of systematic errors at the ppb
level, and the use of current mode gamma-ray detection with vacuum photo diodes
and low-noise solid-state preamplifiers. The average detector photoelectron
yield was determined to be 1300 photoelectrons per MeV. The RMS width seen in
the measurement is therefore dominated by the fluctuations in the number of
gamma rays absorbed in the detector (counting statistics) rather than the
intrinsic detector noise. The detectors were tested for noise performance,
sensitivity to magnetic fields, pedestal stability and cosmic background. False
asymmetries due to gain changes and electronic pickup in the detector system
were measured to be consistent with zero to an accuracy of in a few
hours. We report on the design, operating criteria, and the results of
measurements performed to test the detector array.Comment: 33 pages, 20 figures, 2 table
An Absolute Measurement of Neutron Flux Using Calorimetry
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
A measurement of parity-violating gamma-ray asymmetries in polarized cold neutron capture on 35Cl, 113Cd, and 139La
An apparatus for measuring parity-violating asymmetries in gamma-ray emission
following polarized cold neutron capture was constructed as a 1/10th scale test
of the design for the forthcoming n+p->d+gamma experiment at LANSCE. The
elements of the polarized neutron beam, including a polarized 3He neutron spin
filter and a radio frequency neutron spin rotator, are described. Using CsI(Tl)
detectors and photodiode current mode readout, measurements were made of
asymmetries in gamma-ray emission following neutron capture on 35Cl, 113Cd, and
139La targets. Upper limits on the parity-allowed asymmetry were set at the level of 7 x 10^-6 for all three
targets. Parity-violating asymmetries were observed in
35Cl, A_gamma = (-29.1 +- 6.7) x 10^-6, and 139La, A_gamma = (-15.5 +- 7.1) x
10^-6, values consistent with previous measurements.Comment: 19 pages, 4 figures, submitted to Nucl. Instr. and Meth.
Measurement of the Neutron Lifetime by Counting Trapped Protons
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Measurement of the Neutron Lifetime by Counting Trapped Protons
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
A Measurement of Parity-Violating Neutron Transmission in Xenon
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
A liquid helium target system for a measurement of parity violation in neutron spin rotation
A liquid helium target system was designed and built to perform a precision
measurement of the parity-violating neutron spin rotation in helium due to the
nucleon-nucleon weak interaction. The measurement employed a beam of low energy
neutrons that passed through a crossed neutron polarizer--analyzer pair with
the liquid helium target system located between them. Changes between the
target states generated differences in the beam transmission through the
polarizer--analyzer pair. The amount of parity-violating spin rotation was
determined from the measured beam transmission asymmetries. The expected
parity-violating spin rotation of order rad placed severe constraints
on the target design. In particular, isolation of the parity-odd component of
the spin rotation from a much larger background rotation caused by magnetic
fields required that a nonmagnetic cryostat and target system be supported
inside the magnetic shielding, while allowing nonmagnetic motion of liquid
helium between separated target chambers. This paper provides a detailed
description of the design, function, and performance of the liquid helium
target system.Comment: V2: 29 pages, 14 figues, submitted to Nucl. Instrum. Meth. B. Revised
to address reviewer comment
Precision neutron interferometric measurements of the n-p, n-d, and n-3He zero-energy coherent neutron scattering amplitudes
We have performed high precision measurements of the zero-energy neutron
scattering amplitudes of gas phase molecular hydrogen, deuterium, and He
using neutron interferometry. We find
fm\cite{Schoen03},
fm\cite{Black03,Schoen03}, and
fm\cite{Huffman04}. When combined with the previous world data, properly
corrected for small multiple scattering, radiative corrections, and local field
effects from the theory of neutron optics and combined by the prescriptions of
the Particle Data Group, the zero-energy scattering amplitudes are:
fm, fm, and fm. The precision of
these measurements is now high enough to severely constrain NN few-body models.
The n-d and n-He coherent neutron scattering amplitudes are both now in
disagreement with the best current theories. The new values can be used as
input for precision calculations of few body processes. This precision data is
sensitive to small effects such as nuclear three-body forces, charge-symmetry
breaking in the strong interaction, and residual electromagnetic effects not
yet fully included in current models.Comment: 6 pages, 4 figures, submitted to Physica B as part of the Festschrift
honouring Samuel A. Werner at the International Conference on Neutron
Scattering 200
- âŠ