38 research outputs found

    Nuclear Structure Functions in the Large x Large Q^2 Kinematic Region in Neutrino Deep Inelastic Scattering

    Full text link
    Data from the CCFR E770 Neutrino Deep Inelastic Scattering (DIS) experiment at Fermilab contain events with large Bjorken x (x>0.7) and high momentum transfer (Q^2>50 (GeV/c)^2). A comparison of the data with a model based on no nuclear effects at large x, shows a significant excess of events in the data. Addition of Fermi gas motion of the nucleons in the nucleus to the model does not explain the excess. Adding a higher momentum tail due to the formation of ``quasi-deuterons'' makes some improvement. An exponentially falling F_2 \propto e^-s(x-x_0) at large x, predicted by ``multi-quark clusters'' and ``few-nucleon correlations'', can describe the data. A value of s=8.3 \pm 0.7(stat.)\pm 0.7(sys.) yields the best agreement with the data.Comment: 4 pages, 4 figures, 1 table. Sibmitted to PR

    A Precise Measurement of the Weak Mixing Angle in Neutrino-Nucleon Scattering

    Get PDF
    We report a precise measurement of the weak mixing angle from the ratio of neutral current to charged current inclusive cross-sections in deep-inelastic neutrino-nucleon scattering. The data were gathered at the CCFR neutrino detector in the Fermilab quadrupole-triplet neutrino beam, with neutrino energies up to 600 GeV. Using the on-shell definition, sin2θW1MW2MZ2{\rm sin ^2\theta_W} \equiv 1 - \frac{{\rm M_W} ^2}{{\rm M_Z} ^2}, we obtain sin2θW=0.2218±0.0025(stat.)±0.0036(exp.syst.)±0.0040(model){\rm sin ^2\theta_W} = 0.2218 \pm 0.0025 ({\rm stat.}) \pm 0.0036 ({\rm exp.\: syst.}) \pm 0.0040 ({\rm model}).Comment: 10 pages, Nevis Preprint #1498 (Submitted to Phys. Rev. Lett.

    Determination of the Strange Quark Content of the Nucleon from a Next-to-Leading-Order QCD Analysis of Neutrino Charm Production

    Full text link
    We present the first next-to-leading-order QCD analysis of neutrino charm production, using a sample of 6090 νμ\nu_\mu- and νˉμ\bar\nu_\mu-induced opposite-sign dimuon events observed in the CCFR detector at the Fermilab Tevatron. We find that the nucleon strange quark content is suppressed with respect to the non-strange sea quarks by a factor \kappa = 0.477 \: ^{+\:0.063}_{-\:0.053}, where the error includes statistical, systematic and QCD scale uncertainties. In contrast to previous leading order analyses, we find that the strange sea xx-dependence is similar to that of the non-strange sea, and that the measured charm quark mass, mc=1.70±0.19GeV/c2m_c = 1.70 \pm 0.19 \:{\rm GeV/c}^2, is larger and consistent with that determined in other processes. Further analysis finds that the difference in xx-distributions between xs(x)xs(x) and xsˉ(x)x\bar s(x) is small. A measurement of the Cabibbo-Kobayashi-Maskawa matrix element Vcd=0.2320.020+0.018|V_{cd}|=0.232 ^{+\:0.018}_{-\:0.020} is also presented. uufile containing compressed postscript files of five Figures is appended at the end of the LaTeX source.Comment: Nevis R#150

    A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site

    Get PDF
    This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≥3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda
    corecore