67 research outputs found

    Probabilistic Reachability for Parametric Markov Models

    Get PDF
    Abstract. Given a parametric Markov model, we consider the problem of computing the formula expressing the probability of reaching a given set of states. To attack this principal problem, Daws has suggested to first convert the Markov chain into a finite automaton, from which a regular expression is computed. Afterwards, this expression is evaluated to a closed form expression representing the reachability probability. This paper investigates how this idea can be turned into an effective procedure. It turns out that the bottleneck lies in an exponential growth of the regular expression relative to the number of states. We therefore proceed differently, by tightly intertwining the regular expression computation with its evaluation. This allows us to arrive at an effective method that avoids the exponential blow up in most practical cases. We give a detailed account of the approach, also extending to parametric models with rewards and with non-determinism. Experimental evidence is provided, illustrating that our implementation provides meaningful insights on non-trivial models.

    Probabilistic Reachability for Parametric Markov Models

    Full text link
    Abstract. Given a parametric Markov model, we consider the problem of computing the rational function expressing the probability of reaching a given set of states. To attack this principal problem, Daws has suggested to first convert the Markov chain into a finite automaton, from which a regular expression is computed. Afterwards, this expression is evaluated to a closed form function representing the reachability probability. This paper investigates how this idea can be turned into an effective procedure. It turns out that the bottleneck lies in the growth of the regular expression relative to the number of states (nΘ(logn)). We therefore proceed differently, by tightly intertwining the regular expression computation with its evaluation. This allows us to arrive at an effective method that avoids this blow up in most practical cases. We give a detailed account of the approach, also extending to parametric models with rewards and with non-determinism. Experimental evidence is provided, illustrating that our implementation provides meaningful insights on non-trivial models.

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar

    B2-EIRENE simulation of plasma and neutrals in MAGNUM-PSI

    No full text
    A self-consistent description (performed by means of the B2-EIRENE code package) of a hydrogen plasma including electrons, ions and neutral background gas is used to investigate the processes and plasma behavior under conditions expected in MAGNUM-PSI. Several cases varying in gas-puffing, pumping rate, and plasma parameters are simulated. In all cases a detached plasma regime is achieved. The plasma density increases considerably for higher neutral pressures up to (1-5) x 10(14) cm(-3). The particle flux to the target is similar to 10(24) m(-2) s(-1) and the plasma heat flux is similar to 10 MW m(-2). The latter is significantly reduced in front of the target due to electron and ion cooling resulting from ionization and dissociation of H-2 molecules, and charge exchange/elastic collisions. Under the conditions of investigation, the losses due to molecule activated recombination are dominant compared with 3-body recombination of atomic ions. (c) 2007 Elsevier B.V. All rights reserved

    polymer Studies

    No full text
    corecore