38 research outputs found

    The SAMI Galaxy Survey: Spatially resolving the environmental quenching of star formation in GAMA galaxies

    Get PDF
    We use data from the Sydney-AAO Multi-Object Integral Field Spectrograph (SAMI) Galaxy Survey and the Galaxy And Mass Assembly (GAMA) survey to investigate the spatially-resolved signatures of the environmental quenching of star formation in galaxies. Using dust-corrected measurements of the distribution of Hα emission we measure the radial profiles of star formation in a sample of 201 star-forming galaxies covering three orders of magnitude in stellar mass (M∗M∗; 108.1-1010.95 M⊙) and in 5th nearest neighbour local environment density (ÎŁ5; 10−1.3- 102.1 Mpc−2). We show that star formation rate gradients in galaxies are steeper in dense (log10(ÎŁ5/Mpc2) > 0.5) environments by 0.58 ± 0.29 dex re−1 in galaxies with stellar masses in the range 1010 1.0). These lines of evidence strongly suggest that with increasing local environment density the star formation in galaxies is suppressed, and that this starts in their outskirts such that quenching occurs in an outside-in fashion in dense environments and is not instantaneous

    The SAMI Galaxy Survey: Data Release One with emission-line physics value-added products

    Get PDF
    We present the first major release of data from the SAMI Galaxy Survey. This data release focuses on the emission-line physics of galaxies. Data Release One includes data for 772 galaxies, about 20 per cent of the full survey. Galaxies included have the redshift range 0.004 < z < 0.092, a large mass range (7.6 < logM*/M⊙ < 11.6), and star formation rates of ~10-4 to ~101M⊙ yr-1. For each galaxy, we include two spectral cubes and a set of spatially resolved 2D maps: single- and multi-component emission-line fits (with dust-extinction corrections for strong lines), local dust extinction, and star formation rate. Calibration of the fibre throughputs, fluxes, and differential atmospheric refraction has been improved over the Early Data Release. The data have average spatial resolution of 2.16 arcsec (full width at half-maximum) over the 15 arcsec diameter field of view and spectral (kinematic) resolution of R = 4263 (σ = 30 km s-1) around Ha. The relative flux calibration is better than 5 per cent, and absolute flux calibration has an rms of 10 per cent. The data are presented online through the Australian Astronomical Observatory's Data Central

    The effect of lingonberry leaves and oak cortex addition to sheep diets on pancreatic enzymes activity

    No full text

    Effect of genotype on whole-body and intestinal metabolic response to monensin in mice

    No full text
    Two lines of mice, M16 selected for rapid growth and a randomly,elected control ICR as well as their reciprocal crosses were used to stud), the effects of genotype on whole-body energetics and intestinal responses to monensin. Six mice, eight weeks of age, from each line or reciprocal cross were assigned to one of two treatments, 1) drinking water containing 20 mol/l. monensin dissolved in 0.5% V/V ethanol, and 2) drinking water containing 0.5% V/V ethanol (control) for two weeks, After 11 days (age of 9 weeks and 4 days), whole-body O-2 consumption was measured. At the end of two weeks. jejunal O-2 consumption. intestinal tissue composition and histomorphometrics as well as the rate and efficiency of glucose absorption were estimated. In comparison with the control, monensin administration in drinking water resulted in less daily water intake (13.4 vs. 15.5 ml/mouse, p 0.05) effect on whole-body O-2 consumption and jejunal function, whilst selection for rapid growth resulted in an apparent down-regulation of intestinal function. These data suggest that genetic selection for increased growth does not result in concomitant changes in intestinal function. This asynchrony in the selection for production traits and intestinal function may hinder full phenotypic expression of genotypic growth potential

    Regulation of intestinal glucose absorption: A new issue in animal science

    No full text
    Intestinal glucose absorption occurs via Na+-dependent glucose cotransporters (SGLT1) located in the luminal membrane of enterocytes and is driven by an electrochemical gradient maintained by Na+/K+ ATPase located on the basolateral membrane. Twenty percent of whole animal energy expenditures can be accounted for by the gastrointestinal tract, most of which is the result of Na+/K+ ATPase function. Active intestinal glucose transport is regulated by a number of gastrointestinal peptides such as epidermal growth factor (EGF) and peptide YY (PYY). PYY and EGF can upregulate intestinal glucose absorption by as much as 200-300%. Of special interest is the fact that the energetic costs of intestinal tissue function can vary in relationship to the amount of glucose transported. This value termed "apparent energetic efficiency of glucose uptake" (APEE) may be of value in evaluating the energetic costs of glucose and other nutrients during various physiological and nutritional states. Recent studies suggest that intensive genetic selection for production traits in poultry may result in intestinal absorption being rate-limiting for full phenotypic expression of these traits. Further research is needed to clarify this issue

    Microarchitecture and spatial relationship between bacteria and ileal, cecal, and colonic epithelium in chicks fed a direct-fed microbial, PrimaLac, and salinomycin

    No full text
    Direct-fed microbials (DFM) could serve as a potential alternative to the feeding of antibiotics in poultry production. In this study, the effects of providing a DFM were compared with the feeding of salinomycin on intestinal histomorphometrics, and microarchitecture was examined. Broiler chicks (n = 18 per treatment; trials 1 and 2) were fed a standard starter diet ( control), control + PrimaLac (DFM; 0.3% wt/wt), and control + salinomycin ( SAL; 50 ppm) from hatch to 21d. The birds were euthanized on d 21, and the ileal, jejunal, cecal, and colon tissues were dissected. Samples were examined by light microscopy ( jejunum and ileum; trial 1) and scanning electron microscopy ( ileum, cecum, and colon; trial 2). Feeding of the DFM increased intestinal muscle thickness (P < 0.05) up to 33% compared with the control treatment. The DFM group also had increased villus height and perimeter (P= 0.009 and 0.003, respectively) in jejunum. Segmented filamentous-like bacteria were less numerous in DFM-treated chicks than in the control chicks. Very few segmented filamentous-like bacteria were found near other microbes in the ileum. The DFM chicks had a larger number of bacteria positioned over or near goblet cells and in intervilli spaces. Bacteria in the colon were observed to be attached primarily around and within the crypts. Mucous thickness was less, and the density of bacteria embedded in the mucous blanket appeared to be lower in DFM-treated animals than in the control in all intestinal segments. The birds fed SAL had fewer bacteria and enterocytes in the ileum than in the control-and DFM-treated birds, and they had thicker and fewer microvilli. Because gastrointestinal track colonization by the DFM organisms can prevent the attachment of pathogens to the epithelium, spatial relationships, in this study, demonstrate the functionality of DFM and probiotics in preventing disease. It also supports previous observations that the feeding of salinomycin may alter intestinal function
    corecore