814 research outputs found

    Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC

    Full text link
    We report the first measurements of the moments -- mean (MM), variance (σ2\sigma^{2}), skewness (SS) and kurtosis (κ\kappa) -- of the net-charge multiplicity distributions at mid-rapidity in Au+Au collisions at seven energies, ranging from sNN\sqrt {{s_{\rm NN}}}= 7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net-charge, and are sensitive to the proximity of the QCD critical point. We compare the products of the moments, σ2/M\sigma^{2}/M, SσS\sigma and κσ2\kappa\sigma^{2} with the expectations from Poisson and negative binomial distributions (NBD). The SσS\sigma values deviate from Poisson and are close to NBD baseline, while the κσ2\kappa\sigma^{2} values tend to lie between the two. Within the present uncertainties, our data do not show non-monotonic behavior as a function of collision energy. These measurements provide a distinct way of determining the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.Comment: 7 pages, 4 figures, Accepted by PR

    Killing-Yano tensors and some applications

    Full text link
    The role of Killing and Killing-Yano tensors for studying the geodesic motion of the particle and the superparticle in a curved background is reviewed. Additionally the Papadopoulos list [74] for Killing-Yano tensors in G structures is reproduced by studying the torsion types these structures admit. The Papadopoulos list deals with groups G appearing in the Berger classification, and we enlarge the list by considering additional G structures which are not of the Berger type. Possible applications of these results in the study of supersymmetric particle actions and in the AdS/CFT correspondence are outlined.Comment: 36 pages, no figure

    A multi-scale comparison of modeled and observed seasonal methane emissions in northern wetlands

    Get PDF
    Wetlands are the largest global natural methane (CH4/ source, and emissions between 50 and 70° N latitude contribute 10-30% to this source. Predictive capability of land models for northern wetland CH4 emissions is still low due to limited site measurements, strong spatial and temporal variability in emissions, and complex hydrological and biogeochemical dynamics. To explore this issue, we compare wetland CH4 emission predictions from the Community Land Model 4.5 (CLM4.5-BGC) with siteto regional-scale observations. A comparison of the CH4 fluxes with eddy flux data highlighted needed changes to the model's estimate of aerenchyma area, which we implemented and tested. The model modification substantially reduced biases in CH4 emissions when compared with CarbonTracker CH4 predictions. CLM4.5 CH4 emission predictions agree well with growing season (May-September) CarbonTracker Alaskan regional-level CH4 predictions and sitelevel observations. However, CLM4.5 underestimated CH4 emissions in the cold season (October-April). The monthly atmospheric CH4 mole fraction enhancements due to wetland emissions are also assessed using the Weather Research and Forecasting-Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model coupled with daily emissions from CLM4.5 and compared with aircraft CH4 mole fraction measurements from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) campaign. Both the tower and aircraft analyses confirm the underestimate of cold-season CH4 emissions by CLM4.5. The greatest uncertainties in predicting the seasonal CH4 cycle are from the wetland extent, coldseason CH4 production and CH4 transport processes. We recommend more cold-season experimental studies in highlatitude systems, which could improve the understanding and parameterization of ecosystem structure and function during this period. Predicted CH4 emissions remain uncertain, but we show here that benchmarking against observations across spatial scales can inform model structural and parameter improvements

    Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS

    Full text link
    On very large scales, density fluctuations in the Universe are small, suggesting a perturbative model for large-scale clustering of galaxies (or other dark matter tracers), in which the galaxy density is written as a Taylor series in the local mass density, delta, with the unknown coefficients in the series treated as free "bias" parameters. We extend this model to include dependence of the galaxy density on the local values of nabla_i nabla_j phi and nabla_i v_j, where phi is the potential and v is the peculiar velocity. We show that only two new free parameters are needed to model the power spectrum and bispectrum up to 4th order in the initial density perturbations, once symmetry considerations and equivalences between possible terms are accounted for. One of the new parameters is a bias multiplying s_ij s_ji, where s_ij=[nabla_i nabla_j \nabla^-2 - 1/3 delta^K_ij] delta. The other multiplies s_ij t_ji, where t_ij=[nabla_i nabla_j nabla^-2 - 1/3 delta^K_ij](theta-delta), with theta=-(a H dlnD/dlna)^-1 nabla_i v_i. (There are other, observationally equivalent, ways to write the two terms, e.g., using theta-delta instead of s_ij s_ji.) We show how short-range (non-gravitational) non-locality can be included through a controlled series of higher derivative terms, starting with R^2 nabla^2 delta, where R is the scale of non-locality (this term will be a small correction as long as k^2 R^2 is small, where k is the observed wavenumber). We suggest that there will be much more information in future huge redshift surveys in the range of scales where beyond-linear perturbation theory is both necessary and sufficient than in the fully linear regime.Comment: 24 pg., 5 fi

    Spatial Solitons and Anderson Localization

    Full text link
    Stochastic (Anderson) localization is the spatial localization of the wave-function of quantum particles in random media. We show, that a corresponding phenomenon can stabilize spatial solitons in optical resonators: spatial solitons in resonators with randomly distorted mirrors are more stable than in perfect mirror resonators. We demonstrate the phenomenon numerically, by investigating solitons in lasers with saturable absorber, and analytically by deriving and analyzing coupled equations of spatially coherent and incoherent field components.Comment: submitted to Phys.Rev.

    Repeating the Errors of Our Parents? Family-of-Origin Spouse Violence and Observed Conflict Management in Engaged Couples

    Get PDF
    Based on a developmental social learning analysis, it was hypothesized that observing parental violence predisposes partners to difficulties in managing couple conflict. Seventy-one engaged couples were assessed on their observation of parental violence in their family of origin. All couples were videotaped discussing two areas of current relationship conflict, and their cognitions during the interactions were assessed using a video-mediated recall procedure. Couples in which the male partner reported observing parental violence (male-exposed couples) showed more negative affect and communication during conflict discussions than couples in which neither partner reported observing parental violence (unexposed couples). Couples in which only the female partner reported observing parental violence (female- exposed couples) did not differ from unexposed couples in their affect or behavior. Female-exposed couples reported more negative cognitions than unexposed couples, but male-exposed couples did not differ from unexposed couples in their reported cognitions

    Tensor polarization in elastic electron-deuteron scattering in the momentum transfer range 3.8≤Q≤4.6 fm-1

    Get PDF
    The tensor polarization of the recoil deuteron in elastic electron-deuteron scattering has been measured at the Bates Linear Accelerator Center at three values of four-momentum transfer Q=3.78, 4.22, and 4.62 fm-1, corresponding to incident electron energies of 653, 755, and 853 MeV. The scattered electrons and the recoil deuterons were detected in coincidence. The recoil deuterons were transported to a liquid hydrogen target to undergo a second scattering. The angular distribution of the d→-p scattering was measured using a polarimeter. The polarimeter was calibrated in an auxiliary experiment using a polarized deuteron beam at the Laboratoire National Saturne. A Monte Carlo procedure was used to generate interpolated calibration data because the energy spread in the deuteron energies in the Bates experiment spanned the range of deuteron energies in the calibration experiment. The extracted values of t20 are compared to predictions of different theoretical models of the electromagnetic form factors of the deuteron: nonrelativistic and relativistic nucleon-meson dynamics, Skyrme model, quark models, and perturbative quantum chromodynamics. Along with the world data the structure functions A(Q) and B(Q) are used to separate the charge monopole and charge quadrupole form factors of the deuteron. A node in the charge monopole form factor is observed at Q=4.39±0.16 fm-1

    Measurement of tensor polarization in elastic electron-deuteron scattering in the momentum-transfer range 3.8≤q≤4.6 fm-1

    Get PDF
    The tensor polarization t20 of the recoil deuteron in elastic e-d scattering has been measured for three values of four-momentum transfer, q=3.78, 4.22, and 4.62 fm-1. The data have been used to locate the first node in the charge monopole form factor of the deuteron at q=4.39±0.16 fm-1. The results for t20 are in reasonable agreement with expectations based on the nucleon-meson description of nuclear dynamic

    Search for R-Parity Violating Decays of Scalar Fermions at LEP

    Full text link
    A search for pair-produced scalar fermions under the assumption that R-parity is not conserved has been performed using data collected with the OPAL detector at LEP. The data samples analysed correspond to an integrated luminosity of about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An important consequence of R-parity violation is that the lightest supersymmetric particle is expected to be unstable. Searches of R-parity violating decays of charged sleptons, sneutrinos and squarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield final states consisting of leptons, jets, or both with or without missing energy. No significant single-like excess of events has been observed with respect to the Standard Model expectations. Limits on the production cross- section of scalar fermions in R-parity violating scenarios are obtained. Constraints on the supersymmetric particle masses are also presented in an R-parity violating framework analogous to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.

    Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2

    Get PDF
    The hadronic structure function of the photon F_2^gamma is measured as a function of Bjorken x and of the factorisation scale Q^2 using data taken by the OPAL detector at LEP. Previous OPAL measurements of the x dependence of F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted by QCD, the data show positive scaling violations in F_2^gamma. Several parameterisations of F_2^gamma are in agreement with the measurements whereas the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001, Ascona, Switzerlan
    • …
    corecore