1,450 research outputs found
Response to Nauenberg's "Critique of Quantum Enigma: Physics Encounters Consciousness"
Nauenberg's extended critique of Quantum Enigma rests on fundamental
misunderstandings.Comment: To be published in Foundations of Physic
An quantum approach of measurement based on the Zurek's triple model
In a close form without referring the time-dependent Hamiltonian to the total
system, a consistent approach for quantum measurement is proposed based on
Zurek's triple model of quantum decoherence [W.Zurek, Phys. Rev. D 24, 1516
(1981)]. An exactly-solvable model based on the intracavity system is dealt
with in details to demonstrate the central idea in our approach: by peeling off
one collective variable of the measuring apparatus from its many degrees of
freedom, as the pointer of the apparatus, the collective variable de-couples
with the internal environment formed by the effective internal variables, but
still interacts with the measured system to form a triple entanglement among
the measured system, the pointer and the internal environment. As another
mechanism to cause decoherence, the uncertainty of relative phase and its
many-particle amplification can be summed up to an ideal entanglement or an
Shmidt decomposition with respect to the preferred basis.Comment: 22pages,3figure
Typicality vs. probability in trajectory-based formulations of quantum mechanics
Bohmian mechanics represents the universe as a set of paths with a
probability measure defined on it. The way in which a mathematical model of
this kind can explain the observed phenomena of the universe is examined in
general. It is shown that the explanation does not make use of the full
probability measure, but rather of a suitable set function deriving from it,
which defines relative typicality between single-time cylinder sets. Such a set
function can also be derived directly from the standard quantum formalism,
without the need of an underlying probability measure. The key concept for this
derivation is the {\it quantum typicality rule}, which can be considered as a
generalization of the Born rule. The result is a new formulation of quantum
mechanics, in which particles follow definite trajectories, but which is only
based on the standard formalism of quantum mechanics.Comment: 24 pages, no figures. To appear in Foundation of Physic
Quantum measurement as driven phase transition: An exactly solvable model
A model of quantum measurement is proposed, which aims to describe
statistical mechanical aspects of this phenomenon, starting from a purely
Hamiltonian formulation. The macroscopic measurement apparatus is modeled as an
ideal Bose gas, the order parameter of which, that is, the amplitude of the
condensate, is the pointer variable. It is shown that properties of
irreversibility and ergodicity breaking, which are inherent in the model
apparatus, ensure the appearance of definite results of the measurement, and
provide a dynamical realization of wave-function reduction or collapse. The
measurement process takes place in two steps: First, the reduction of the state
of the tested system occurs over a time of order , where
is the temperature of the apparatus, and is the number of its degrees of
freedom. This decoherence process is governed by the apparatus-system
interaction. During the second step classical correlations are established
between the apparatus and the tested system over the much longer time-scale of
equilibration of the apparatus. The influence of the parameters of the model on
non-ideality of the measurement is discussed. Schr\"{o}dinger kittens, EPR
setups and information transfer are analyzed.Comment: 35 pages revte
Decoherence and wave function collapse
The possibility of consistency between the basic quantum principles of
quantum mechanics and wave function collapse is reexamined. A specific
interpretation of environment is proposed for this aim and applied to
decoherence. When the organization of a measuring apparatus is taken into
account, this approach leads also to an interpretation of wave function
collapse, which would result in principle from the same interactions with
environment as decoherence. This proposal is shown consistent with the
non-separable character of quantum mechanics
Quantum models of classical mechanics: maximum entropy packets
In a previous paper, a project of constructing quantum models of classical
properties has been started. The present paper concludes the project by turning
to classical mechanics. The quantum states that maximize entropy for given
averages and variances of coordinates and momenta are called ME packets. They
generalize the Gaussian wave packets. A non-trivial extension of the
partition-function method of probability calculus to quantum mechanics is
given. Non-commutativity of quantum variables limits its usefulness. Still, the
general form of the state operators of ME packets is obtained with its help.
The diagonal representation of the operators is found. A general way of
calculating averages that can replace the partition function method is
described. Classical mechanics is reinterpreted as a statistical theory.
Classical trajectories are replaced by classical ME packets. Quantum states
approximate classical ones if the product of the coordinate and momentum
variances is much larger than Planck constant. Thus, ME packets with large
variances follow their classical counterparts better than Gaussian wave
packets.Comment: 26 pages, no figure. Introduction and the section on classical limit
are extended, new references added. Definitive version accepted by Found.
Phy
Stringent Constraints on Cosmological Neutrino-Antineutrino Asymmetries from Synchronized Flavor Transformation
We assess a mechanism which can transform neutrino-antineutrino asymmetries
between flavors in the early universe, and confirm that such transformation is
unavoidable in the near bi-maximal framework emerging for the neutrino mixing
matrix. We show that the process is a standard Mikheyev-Smirnov-Wolfenstein
flavor transformation dictated by a synchronization of momentum states. We also
show that flavor ``equilibration'' is a special feature of maximal mixing, and
carefully examine new constraints placed on neutrino asymmetries. In
particular, the big bang nucleosynthesis limit on electron neutrino degeneracy
xi_e < 0.04 does not apply directly to all flavors, yet confirmation of the
large-mixing-angle solution to the solar neutrino problem will eliminate the
possibility of degenerate big bang nucleosynthesis.Comment: 11 pages, 6 figures; minor changes to match PRD versio
Explaining the unobserved: why quantum mechanics is not only about information
A remarkable theorem by Clifton, Bub and Halvorson (2003)(CBH) characterizes
quantum theory in terms of information--theoretic principles. According to Bub
(2004, 2005) the philosophical significance of the theorem is that quantum
theory should be regarded as a ``principle'' theory about (quantum) information
rather than a ``constructive'' theory about the dynamics of quantum systems.
Here we criticize Bub's principle approach arguing that if the mathematical
formalism of quantum mechanics remains intact then there is no escape route
from solving the measurement problem by constructive theories. We further
propose a (Wigner--type) thought experiment that we argue demonstrates that
quantum mechanics on the information--theoretic approach is incomplete.Comment: 34 Page
Causality - Complexity - Consistency: Can Space-Time Be Based on Logic and Computation?
The difficulty of explaining non-local correlations in a fixed causal
structure sheds new light on the old debate on whether space and time are to be
seen as fundamental. Refraining from assuming space-time as given a priori has
a number of consequences. First, the usual definitions of randomness depend on
a causal structure and turn meaningless. So motivated, we propose an intrinsic,
physically motivated measure for the randomness of a string of bits: its length
minus its normalized work value, a quantity we closely relate to its Kolmogorov
complexity (the length of the shortest program making a universal Turing
machine output this string). We test this alternative concept of randomness for
the example of non-local correlations, and we end up with a reasoning that
leads to similar conclusions as in, but is conceptually more direct than, the
probabilistic view since only the outcomes of measurements that can actually
all be carried out together are put into relation to each other. In the same
context-free spirit, we connect the logical reversibility of an evolution to
the second law of thermodynamics and the arrow of time. Refining this, we end
up with a speculation on the emergence of a space-time structure on bit strings
in terms of data-compressibility relations. Finally, we show that logical
consistency, by which we replace the abandoned causality, it strictly weaker a
constraint than the latter in the multi-party case.Comment: 17 pages, 16 figures, small correction
Output spectrum of a detector measuring quantum oscillations
We consider a two-level quantum system (qubit) which is continuously measured
by a detector and calculate the spectral density of the detector output. In the
weakly coupled case the spectrum exhibits a moderate peak at the frequency of
quantum oscillations and a Lorentzian-shape increase of the detector noise at
low frequency. With increasing coupling the spectrum transforms into a single
Lorentzian corresponding to random jumps between two states. We prove that the
Bayesian formalism for the selective evolution of the density matrix gives the
same spectrum as the conventional master equation approach, despite the
significant difference in interpretation. The effects of the detector
nonideality and the finite-temperature environment are also discussed.Comment: 8 pages, 6 figure
- …
