62 research outputs found
Extensive Entropy Bounds
It is shown that, for systems in which the entropy is an extensive function
of the energy and volume, the Bekenstein and the holographic entropy bounds
predict new results. More explicitly, the Bekenstein entropy bound leads to the
entropy of thermal radiation (the Unruh-Wald bound) and the spherical entropy
bound implies the "causal entropy bound". Surprisingly, the first bound shows a
close relationship between black hole physics and the Stephan-Boltzmann law
(for the energy and entropy flux densities of the radiation emitted by a hot
blackbody). Furthermore, we find that the number of different species of
massless fields is bounded by .Comment: 8 pages, revtex, To appear in Phys. Rev.
Time-frequency detection algorithm for gravitational wave bursts
An efficient algorithm is presented for the identification of short bursts of
gravitational radiation in the data from broad-band interferometric detectors.
The algorithm consists of three steps: pixels of the time-frequency
representation of the data that have power above a fixed threshold are first
identified. Clusters of such pixels that conform to a set of rules on their
size and their proximity to other clusters are formed, and a final threshold is
applied on the power integrated over all pixels in such clusters. Formal
arguments are given to support the conjecture that this algorithm is very
efficient for a wide class of signals. A precise model for the false alarm rate
of this algorithm is presented, and it is shown using a number of
representative numerical simulations to be accurate at the 1% level for most
values of the parameters, with maximal error around 10%.Comment: 26 pages, 15 figures, to appear in PR
Optimal detection of burst events in gravitational wave interferometric observatories
We consider the problem of detecting a burst signal of unknown shape. We
introduce a statistic which generalizes the excess power statistic proposed by
Flanagan and Hughes and extended by Anderson et al. The statistic we propose is
shown to be optimal for arbitrary noise spectral characteristic, under the two
hypotheses that the noise is Gaussian, and that the prior for the signal is
uniform. The statistic derivation is based on the assumption that a signal
affects only affects N samples in the data stream, but that no other
information is a priori available, and that the value of the signal at each
sample can be arbitrary. We show that the proposed statistic can be implemented
combining standard time-series analysis tools which can be efficiently
implemented, and the resulting computational cost is still compatible with an
on-line analysis of interferometric data. We generalize this version of an
excess power statistic to the multiple detector case, also including the effect
of correlated noise. We give full details about the implementation of the
algorithm, both for the single and the multiple detector case, and we discuss
exact and approximate forms, depending on the specific characteristics of the
noise and on the assumed length of the burst event. As a example, we show what
would be the sensitivity of the network of interferometers to a delta-function
burst.Comment: 21 pages, 5 figures in 3 groups. Submitted for publication to
Phys.Rev.D. A Mathematica notebook is available at
http://www.ligo.caltech.edu/~avicere/nda/burst/Burst.nb which allows to
reproduce the numerical results of the pape
Detection methods for non-Gaussian gravitational wave stochastic backgrounds
We address the issue of finding an optimal detection method for a
discontinuous or intermittent gravitational wave stochastic background. Such a
signal might sound something like popcorn popping. We derive an appropriate
version of the maximum likelihood detection statistic, and compare its
performance to that of the standard cross-correlation statistic both
analytically and with Monte Carlo simulations. The maximum likelihood statistic
performs better than the cross-correlation statistic when the background is
sufficiently non-Gaussian. For both ground and space based detectors, this
results in a gain factor, ranging roughly from 1 to 3, in the minimum
gravitational-wave energy density necessary for detection, depending on the
duty cycle of the background. Our analysis is exploratory, as we assume that
the time structure of the events cannot be resolved, and we assume white,
Gaussian noise in two collocated, aligned detectors. Before this detection
method can be used in practice with real detector data, further work is
required to generalize our analysis to accommodate separated, misaligned
detectors with realistic, colored, non-Gaussian noise.Comment: 25 pages, 12 figures, submitted to physical review D, added revisions
in response to reviewers comment
Bound states and the Bekenstein bound
We explore the validity of the generalized Bekenstein bound, S <= pi M a. We
define the entropy S as the logarithm of the number of states which have energy
eigenvalue below M and are localized to a flat space region of width a. If
boundary conditions that localize field modes are imposed by fiat, then the
bound encounters well-known difficulties with negative Casimir energy and large
species number, as well as novel problems arising only in the generalized form.
In realistic systems, however, finite-size effects contribute additional
energy. We study two different models for estimating such contributions. Our
analysis suggests that the bound is both valid and nontrivial if interactions
are properly included, so that the entropy S counts the bound states of
interacting fields.Comment: 35 page
A Brane World Perspective on the Cosmological Constant and the Hierarchy Problems
We elaborate on the recently proposed static brane world scenario, where the
effective 4-D cosmological constant is exponentially small when parallel
3-branes are far apart. We extend this result to a compactified model with two
positive tension branes. Besides an exponentially small effective 4-D
cosmological constant, this model incorporates a Randall-Sundrum-like solution
to the hierarchy problem. Furthermore, the exponential factors for the
hierarchy problem and the cosmological constant problem obey an inequality that
is satisfied in nature. This inequality implies that the cosmological constant
problem can be explained if the hierarchy problem is understood. The basic idea
generalizes to the multibrane world scenario. We discuss models with piecewise
adjustable bulk cosmological constants (to be determined by the 5-dimensional
Einstein equation), a key element of the scenario. We also discuss the global
structure of this scenario and clarify the physical properties of the particle
(Rindler) horizons that are present. Finally, we derive a 4-D effective theory
in which all observers on all branes not separated by particle horizons measure
the same Newton's constant and 4-D cosmological constant.Comment: revtex, 63 pages, 8 figures, one table, revised version, more
discussions on the global structure, references adde
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Black Hole Thermodynamics and Statistical Mechanics
We have known for more than thirty years that black holes behave as
thermodynamic systems, radiating as black bodies with characteristic
temperatures and entropies. This behavior is not only interesting in its own
right; it could also, through a statistical mechanical description, cast light
on some of the deep problems of quantizing gravity. In these lectures, I review
what we currently know about black hole thermodynamics and statistical
mechanics, suggest a rather speculative "universal" characterization of the
underlying states, and describe some key open questions.Comment: 35 pages, Springer macros; for the Proceedings of the 4th Aegean
Summer School on Black Hole
From Clock Synchronization to Dark Matter as a Relativistic Inertial Effect
Lecture at BOSS2011 on relativistic metrology, on clock synchronization,
relativistic dynamics and non-inertial frames in Minkowski spacetime, on
relativistic atomic physics, on ADM canonical tetrad gravity in asymptotically
Minkowskian spacetimes, on the York canonical basis identifying the inertial
(gauge) and tidal degrees of freedom of the gravitational field, on the
Post-Minkowskian linearization in 3-orthogonal gauges, on the Post-Newtonian
limit of matter Hamilton equations, on the possibility to interpret dark matter
as a relativistic inertial effect connected with relativistic metrology (i.e.
clock synchronization) in Einstein GR.Comment: 90 pages. Lecture at BOSS201
- âŠ