13,154 research outputs found

    Determining the Nonperturbative Collins-Soper Kernel From Lattice QCD

    Get PDF
    At small transverse momentum qTq_T, transverse-momentum dependent parton distribution functions (TMDPDFs) arise as genuinely nonperturbative objects that describe Drell-Yan like processes in hadron collisions as well as semi-inclusive deep-inelastic scattering. TMDPDFs naturally depend on the hadron momentum, and the associated evolution is determined by the Collins-Soper equation. For qTΛQCDq_T \sim \Lambda_\mathrm{QCD} the corresponding evolution kernel (or anomalous dimension) is nonperturbative and must be determined as an independent ingredient in order to relate TMDPDFs at different scales. We propose a method to extract this kernel using lattice QCD and the Large-Momentum Effective Theory, where the physical TMD correlation involving light-like paths is approximated by a quasi TMDPDF, defined using equal-time correlation functions with a large-momentum hadron state. The kernel is determined from a ratio of quasi TMDPDFs extracted at different hadron momenta.Comment: 9 pages, 2 figures; v2: extended the review of TMDPDF commonalities, version submitted to PRD; v3: minor changes, journal versio

    Proximity Effect in Nb/Au/CoFe Trilayers

    Full text link
    We have investigated the superconducting critical temperatures of Nb/Au/CoFe trilayers as a function of Au and CoFe thicknesses. Without the CoFe layer the superconducting critical temperatures of Nb/Au bilayers as a function of Au thickness follow the well-known proximity effect between a superconductor and a normal metal. The superconducting critical temperatures of Nb/Au/CoFe trilayers as a function of Au thickness exhibit a rapid initial increase in the small Au thickness region and increase slowly to a limiting value above this region, accompanied by a small oscillation of Tc. On the other hand, the superconducting critical temperatures of Nb/Au/CoFe trilayers as a function of CoFe thickness show non-monotonic behavior with a shallow dip feature. We analyzed the Tc behavior in terms of Usadel formalism and found that most features are consistent with the theory, although the small oscillation of Tc as a function of the Au thickness cannot be accounted for. We have also found quantitative values for the two interfaces: Nb/Au and Au/CoFe.Comment: 25 pages, 6 figure

    Chemical Hardness, Linear Response, and Pseudopotential Transferability

    Full text link
    We propose a systematic method of analyzing pseudopotential transferability based on linear-response properties of the free atom, including self-consistent chemical hardness and polarizability. Our calculation of hardness extends the approach of Teter\cite{teter} not only by including self-consistency, but also by generalizing to non-diagonal hardness matrices, thereby allowing us to test for transferability to non-spherically symmetric environments. We apply the method to study the transferability of norm-conserving pseudopotentials for a variety of elements in the Periodic Table. We find that the self-consistent corrections are frequently significant, and should not be neglected. We prove that the partial-core correction improves the pseudopotential hardness of alkali metals considerably. We propose a quantity to represent the average hardness error and calculate this quantity for many representative elements as a function of pseudopotential cutoff radii. We find that the atomic polarizabilities are usually well reproduced by the norm-conserving pseudopotentials. Our results provide useful guidelines for making optimal choices in the pseudopotential generation procedure.Comment: Revtex (preprint style, 33 pages) + 9 postscript figures A version in two-column article style with embedded figures is available at http://electron.rutgers.edu/~dhv/preprints/index.html#l

    Comparison of Material Properties and Microstructure of Specimens Built Using the 3D Systems Vanguard HS and Vanguard HiQ+HSSLS Systems

    Get PDF
    The HiQ upgrade to the 3D Systems Vanguard selective laser sintering (SLS) machine incorporates a revised thermal calibration system and new control software. The paper compares the tensile modulus, tensile strength, elongation at break, flexural modulus, Izod impact resistance and microstructure of two batteries of standard specimens built from recycled Duraform PA (Nylon 12). The first set is built on a Vanguard HS system and the second on the same system with the HiQ upgrade installed. The upgrade reduces user intervention, decreases total build time and improves surface finish. However, using the default processing parameters, tensile, flexure and impact properties are all found to decline after the upgrade is installed.Mechanical Engineerin

    P-wave Pairing and Colossal Magnetoresistance in Manganese Oxides

    Full text link
    We point out that the existing experimental data of most manganese oxides show the {\sl frustrated} p-wave superconducting condensation in the ferromagnetic phase in the sense that the superconducting coherence is not long enough to cover the whole system. The superconducting state is similar to the A1A_{1} state in superfluid He-3. The sharp drop of resistivity, the steep jump of specific heat, and the gap opening in tunneling are well understood in terms of the p-wave pairing. In addition, colossal magnetoresistance (CMR) is naturally explained by the superconducting fluctuations with increasing magnetic fields. The finite resistivity may be due to some magnetic inhomogeneities. This study leads to the possibility of room temperature superconductivity.Comment: LaTex, 14 pages, For more information, please send me an e-mail. e-mail adrress : [email protected]

    Dynamic method to distinguish between left- and right-handed chiral molecules

    Full text link
    We study quantum systems with broken symmetry that can be modelled as cyclic three-level atoms with coexisting one- and two-photon transitions. They can be selectively optically excited to any state. As an example, we show that left- and right-handed chiral molecules starting in the same initial states can evolve into different final states by a purely dynamic transfer process. That means, left- and right-handed molecules can be distinguished purely dynamically.Comment: 4 pages, submitted to Phys. Rev.

    Lattice Boltzmann Approach to High-Speed Compressible Flows

    Full text link
    We present an improved lattice Boltzmann model for high-speed compressible flows. The model is composed of a discrete-velocity model by Kataoka and Tsutahara [Phys. Rev. E \textbf{69}, 056702 (2004)] and an appropriate finite-difference scheme combined with an additional dissipation term. With the dissipation term parameters in the model can be flexibly chosen so that the von Neumann stability condition is satisfied. The influence of the various model parameters on the numerical stability is analyzed and some reference values of parameter are suggested. The new scheme works for both subsonic and supersonic flows with a Mach number up to 30 (or higher), which is validated by well-known benchmark tests. Simulations on Riemann problems with very high ratios (1000:11000:1) of pressure and density also show good accuracy and stability. Successful recovering of regular and double Mach shock reflections shows the potential application of the lattice Boltzmann model to fluid systems where non-equilibrium processes are intrinsic. The new scheme for stability can be easily extended to other lattice Boltzmann models.Comment: Figs.11 and 12 in JPEG format. Int. J. Mod. Phys. C (to appear

    Ergodic property of Markovian semigroups on standard forms of von Neumann algebras

    Full text link
    We give sufficient conditions for ergodicity of the Markovian semigroups associated to Dirichlet forms on standard forms of von Neumann algebras constructed by the method proposed in Refs. [Par1,Par2]. We apply our result to show that the diffusion type Markovian semigroups for quantum spin systems are ergodic in the region of high temperatures where the uniqueness of the KMS-state holds.Comment: 25 page

    Spin Polarisability of the Nucleon in the Heavy Baryon Effective Field Theory

    Full text link
    We have constructed a heavy baryon effective field theory with photon as an external field in accordance with the symmetry requirements similar to the heavy quark effective field theory. By treating the heavy baryon and anti-baryon equally on the same footing in the effective field theory, we have calculated the spin polarisabilities γi,i=1...4\gamma_i, i=1...4 of the nucleon at third order and at fourth-order of the spin-dependent Compton scattering. At leading order (LO), our results agree with the corresponding results of the heavy baryon chiral perturbation theory, at the next-to-leading order(NLO) the results show a large correction to the ones in the heavy baryon chiral perturbation theory due to baryon-antibaryon coupling terms. The low energy theorem is satisfied both at LO and at NLO. The contributions arising from the heavy baryon-antibaryon vertex were found to be significant and the results of the polarisabilities obtained from our theory is much closer to the experimental data.Comment: 21pages, title changed, minimal correction

    Influence of oxygen vacancy on the electronic structure of HfO2_2 film

    Get PDF
    We investigated the unoccupied part of the electronic structure of the oxygen-deficient hafnium oxide (HfO1.8_{\sim1.8}) using soft x-ray absorption spectroscopy at O KK and Hf N3N_3 edges. Band-tail states beneath the unoccupied Hf 5dd band are observed in the O KK-edge spectra; combined with ultraviolet photoemission spectrum, this indicates the non-negligible occupation of Hf 5dd state. However, Hf N3N_3-edge magnetic circular dichroism spectrum reveals the absence of a long-range ferromagnetic spin order in the oxide. Thus the small amount of dd electron gained by the vacancy formation does not show inter-site correlation, contrary to a recent report [M. Venkatesan {\it et al.}, Nature {\bf 430}, 630 (2004)].Comment: 5 pages, 4 figures, submitted to Phys. Rev.
    corecore