We have investigated the superconducting critical temperatures of Nb/Au/CoFe
trilayers as a function of Au and CoFe thicknesses. Without the CoFe layer the
superconducting critical temperatures of Nb/Au bilayers as a function of Au
thickness follow the well-known proximity effect between a superconductor and a
normal metal. The superconducting critical temperatures of Nb/Au/CoFe trilayers
as a function of Au thickness exhibit a rapid initial increase in the small Au
thickness region and increase slowly to a limiting value above this region,
accompanied by a small oscillation of Tc. On the other hand, the
superconducting critical temperatures of Nb/Au/CoFe trilayers as a function of
CoFe thickness show non-monotonic behavior with a shallow dip feature. We
analyzed the Tc behavior in terms of Usadel formalism and found that most
features are consistent with the theory, although the small oscillation of Tc
as a function of the Au thickness cannot be accounted for. We have also found
quantitative values for the two interfaces: Nb/Au and Au/CoFe.Comment: 25 pages, 6 figure