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At small transverse momentum qT , transverse-momentum dependent parton distribution functions
(TMDPDFs) arise as genuinely nonperturbative objects that describe Drell-Yan like processes in hadron
collisions as well as semi-inclusive deep-inelastic scattering. TMDPDFs naturally depend on the hadron
momentum, and the associated evolution is determined by the Collins-Soper equation. For qT ∼ ΛQCD the
corresponding evolution kernel (or anomalous dimension) is nonperturbative and must be determined as an
independent ingredient in order to relate TMDPDFs at different scales. We propose a method to extract this
kernel using lattice QCD and the large-momentum effective theory, where the physical TMD correlation
involving light-like paths is approximated by a quasi-TMDPDF, defined using equal-time correlation
functions with a large-momentum hadron state. The kernel is determined from a ratio of quasi-TMDPDFs
extracted at different hadron momenta.

DOI: 10.1103/PhysRevD.99.034505

I. INTRODUCTION

In the past decades, advances in theory and experiment
have made it possible to explore the structure of the proton
beyond the simplest longitudinal momentum distributions.
Key observables are transverse momentum distributions
(TMDs), which measure the intrinsic transverse momentum
qT of partons in the proton, as well as describing the
probability to produce particles at larger qT in high energy
collisions. These TMDs are probed directly by experiments
on Drell-Yan, semi-inclusive deep inelastic scattering
(SIDIS), and other processes. Recently, progress has been
made in determining transverse-momentum dependent
parton distribution functions (TMDPDFs) by using lattice
QCD [1–6] to study equal-time correlators. Such correla-
tors are a key ingredient in the large-momentum effective
theory (LaMET) [7,8], where one computes a lightcone
correlator using an equal-time correlator in a boosted
proton state. For TMDPDFs the first theoretical studies
in LaMET have been carried out in Refs. [9–11].
The TMDPDF fTMD

i ðx; b⃗T; μ; ζÞ for a parton of flavor i
depends on x, the fraction of the hadron momentum carried
by the struck parton, b⃗T , the Fourier-conjugate of the

transverse momentum q⃗T , and on a virtuality scale μ.
In addition, it depends on a scale ζ, which is related to the
momentum of the hadron or equivalently the hard scale
of the scattering process. Measuring nonperturbative
TMDPDFs, whether from experiment or lattice, thus
requires to specify the scales ðμ0; ζ0Þ where the
TMDPDF is extracted. For instance, lattice calculations
are restricted to μ20 ∼ ζ0 ∼Oð4 GeV2Þ due to finite lattice
spacing, while for example the application to Drell-Yan
production uses μ2∼ζ∼m2

Z≈ð91GeVÞ2. The TMDPDFs
thus need be evolved from ðμ0; ζ0Þ to the phenomenologi-
cally relevant scales ðμ; ζÞ, using

fTMD
i ðx; b⃗T; μ; ζÞ ¼ fTMD

i ðx; b⃗T; μ0; ζ0Þ

× exp

�Z
μ

μ0

dμ0

μ0
γiμðμ0; ζ0Þ

�

× exp

�
1

2
γiζðμ; bTÞ ln

ζ

ζ0

�
: ð1Þ

The first exponential in Eq. (1) is the μ evolution and
the second exponential is the Collins-Soper evolution in ζ
[12–14] in the formulation of Ref. [15], with γiμ and γiζ
being the associated anomalous dimensions. Here γiζ is the

Collins-Soper kernel, often denoted by K̃.
The μ evolution in Eq. (1) is perturbative as long as both

μ0, μ ≫ ΛQCD, analogous to the perturbative DGLAP
evolution for collinear PDFs. In contrast, the Collins-
Soper kernel involves the bT-dependent anomalous
dimension γiζðμ; bTÞ, which becomes nonperturbative in
the region b−1T ∼ qT ∼ ΛQCD, even if μ ≫ ΛQCD. Relating
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the nonperturbative TMDPDF extracted at some reference
scales ðμ0; ζ0Þ to the phenomenologically relevant scales
ðμ; ζÞ thus crucially relies on the nonperturbative knowl-
edge of the Collins-Soper kernel.
Due to the simple form of Eq. (1), the Collins-Soper

evolution can be factored out by taking the ratio of two
TMDPDFs extracted at different values ζ1 ≠ ζ2,

γiζðμ; bTÞ ¼
2

lnðζ1=ζ2Þ
ln
fTMD
i ðx; b⃗T; μ; ζ1Þ

fTMD
i ðx; b⃗T; μ; ζ2Þ

: ð2Þ

One option is to extract γiζðμ; bTÞ experimentally. For
example, one can use Drell-Yan production at small
qT ≪ Q, where Q is the invariant mass of the Drell-Yan
pair, and use different values ofQ to obtainfTMD

i¼q ðx; b⃗T; μ; ζÞ
at different ζ values. This can be done using results from
global fits, see e.g., Refs. [16,17]. Experimentally, the
TMDPDF is extracted as a function of q⃗T , which makes
it challenging to use Eq. (2) since it requires the Fourier
transformation into b⃗T space. Interestingly, Eq. (2) is
independent of the momentum fraction x and choice of
ζ1;2, which is useful to assess associated systematics and to
validate the applicability of TMD factorization.
In this paper, we propose a first-principle method of

determining the nonperturbative γqζ using lattice QCD. A
potential benefit is that one has, in principle, more control
over the systematics in the calculation. The TMDPDFs in
Eq. (2) are not directly computable on the lattice because
they involve time dependent operators with Wilson lines on
(or close to) the light cone. We therefore consider the
LaMET approach for calculating the ratio in Eq. (2) from
lattice QCD, which will involve additional perturbative
matching corrections. Our proposed formula for γqζðμ; bTÞ
is analogous to Eq. (2) and is given in Sec. IV.
Below in Sec. II, we briefly review the definition of

TMDPDFs in the context of TMD factorization for proton-
proton collisions. In Sec. III, we present the construction of
quasi-TMDPDFs using LaMET that are computable on
lattice, and briefly address issues arising from the presence
of both collinear and soft matrix elements. The strategy to
extract γqζ from lattice is presented in Sec. IV. We conclude
in Sec. V.

II. TMD FACTORIZATION

TMD factorization was originally derived by Collins,
Soper and Sterman (CSS) in Refs. [12–14] and extended by
Collins in Ref. [15]. The cancellation of potentially
factorization-violating Glauber contributions has been
shown in Refs. [15,18–21]. The factorization has also been
considered in the framework of soft-collinear effective
theory (SCET) [22–25] by various authors [26–32], see,
e.g., Ref. [33] for a detailed discussion of the different
approaches.

We consider the production of a color-singlet final
state F with invariant mass Q, rapidity Y and small
transverse momentum qT ¼ jq⃗T j ≪ Q in the scattering
of two energetic protons moving close to the nμ ¼
ð1; 0; 0; 1Þ and n̄μ ¼ ð1; 0; 0;−1Þ directions with a center
of mass energy Ecm. In the limit qT ≪ Q the cross section
can be factorized as

dσ
dQdYd2q⃗T

¼
X
i;j

HijðQ;μÞ
Z

d2b⃗Teib⃗T ·q⃗T

×fTMD
i ðxa; b⃗T;μ;ζaÞfTMD

j ðxb; b⃗T;μ;ζbÞ; ð3Þ

which holds up to power corrections of relative order
q2T=Q

2 and Λ2
QCD=Q

2, but remains valid in the nonpertur-
bative regime qT ∼ ΛQCD. Here, Hij is the hard function
describing virtual corrections to the underlying hard proc-
ess ij → F, where i, j are the parton flavors (for gluon-
induced process, ij ¼ gg, the hard function and the
TMDPDFs carry helicity indices, which are suppressed
here), xa;b ¼ Qe�Y=Ecm are the longitudinal momentum
fractions carried by the struck partons, and fTMD are the
TMDPDFs in Fourier space. (Our H and fTMDs agree with
the definitions used in Refs. [15,26,29,32,34–38], but differ
from those of Refs. [12–14,39], see Refs. [33,40] for
relations.) Note that these physical TMDs involve staple
Wilson line paths, and hence differ from the straight line
paths considered in Refs. [1,2,41]. A similar result is
obtained for SIDIS, ep → hþ X, where the transverse
momentum of the hadron h is measured by a TMD
fragmentation function rather than a TMDPDF, which
obeys the same Collins-Soper equation [15].
An important feature of TMDs is that bare matrix

elements not only suffer from UV divergences regulated
by ϵ (for example in dimensional regularization with
d ¼ 4 − 2ϵ), but also from rapidity divergences (also
known as lightcone divergences) which require another
regulator [12,26,29,32,42–44] that we will generically
denote by τ. Many such regulators have been suggested
in the literature [12,15,29,32,35,37,39,44–47]. As a con-
sequence, TMDPDFs depend on both the renormalization
scale μ and the parameter ζ. In Eq. (3) μ formally cancels
between the H and fTMD functions, but in practice is
chosen as μ ∼Q to avoid large logarithms lnðQ=μÞ in the
hard function. The values for ζa and ζb are not fixed
individually, but their product is fixed to ζaζb ¼ Q4. This
forces one to evaluate the TMDPDFs at μ2 ∼ ζ ∼Q2, and
requires the use of Eq. (1) to evolve them from some other
scales like ðμ20; ζ0Þ ∼Oð4 GeV2Þ where they are nonper-
turbatively determined (or parametrized).
A definition of the quark TMDPDF consistent with

Refs. [15,29,32] can be given by
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fTMD
q ðx; b⃗T; μ; ζÞ ¼ lim

ϵ→0
τ→0

Zuvðμ; ζ; ϵÞBqðx; b⃗T; ϵ; τ; ζÞ

× Δq
SðbT; ϵ; τÞ: ð4Þ

Here Zuv is the ultraviolet (UV) renormalization factor, and
we refer to Bq and Δ

q
S as the bare beam function (where we

follow the naming scheme of Ref. [48]) and soft factor,
respectively, to distinguish them from the TMDPDF fTMD

q .
References [15,29,32] use different definitions for τ, Bq,
and Δq

S but all choices yield the same fTMD
q . As τ → 0 only

the combination 1=τ − ln
ffiffiffi
ζ

p
shows up in the bare function

Bq. Importantly, 1=τ divergences cancel out in Eq. (4)
yielding a well-defined TMDPDF. A remnant of this
cancellation is the appearance of ζ in fTMD

q . In Eq. (3)
we have

ζa ¼ x2aðP−
a Þ2e−2yn ; ζb ¼ x2bðPþ

b Þ2e2yn ; ð5Þ

where Pa;b are the hadron momenta and yn is an arbitrary
parameter controlling the split of soft radiation into the
TMDPDFs (where the precise specification of yn differs in
Refs. [15,29,32]). Their product is always fixed to

ζaζb ¼ Q4 ¼ ðxaxbE2
cmÞ2: ð6Þ

Eqs. (5) and (6) involve the momentum fractions xa and xb,
and thus are specified in momentum space.
A well-known example of Eq. (4) is Collins’ regulator

[15] where Wilson lines are taken off the lightcone, and the
soft factor is defined as

Δq
SðbT; ϵ; τÞ ¼ lim

yA→∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SyA;yn

SyA;yBSyn;yB

r

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SqCðbT; ϵ; 2yn − 2yBÞ

p ; ð7Þ

(see Ref. [49] for the last equality). Here, Sya;yb denotes a
soft matrix element with Wilson lines parametrized by the
rapidities ya and yb, and yA and yB are the rapidities of the
Wilson lines entering Bq for the n-collinear proton and n̄-
collinear proton, respectively. The regulator is given by τ ¼
1=ðyB − ynÞ with yB → −∞. For Collins’ beam function
we have

Bqðx; b⃗T; ϵ; τ; ζÞ ¼ BC
q ðx; b⃗T; ϵ; yP − yBÞ; ð8Þ

which only depends on the rapidity difference yP − yB
since 1=τ − ln

ffiffiffi
ζ

p ¼ yB − yP − lnðxmPÞ, where mP and yP
are the proton mass and rapidity, and P− ¼ mPeyP is the
proton momentum.
In the EIS scheme [29,30] one regulates eikonal propa-

gators by basically shifting 1=ðk� þ i0Þ → 1=ðk� þ iδ�Þ.
In this scheme there is a soft function S and two zero-bin

subtraction [50] functions S0 which avoid double counting
between the soft function S and the beam function B. The S
and S0 appear together as a multiplicative factor of
S=ðS0S0Þ ¼ 1=S ¼ 1=ð ffiffiffi

S
p ffiffiffi

S
p Þ. With the δ� regulators

one therefore defines the soft factor appearing in the
TMD as

Δq
SðbT; ϵ; τÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SqEISðbT; ϵ; δ−e−ynÞ

p : ð9Þ

Here the regulator is 1=τ ¼ lnðδ−e−ynÞ. In this scheme

Bqðx; b⃗T; ϵ; τ; ζÞ ¼ BEIS
q ðx; b⃗T; ϵ; δ−=ðxP−ÞÞ; ð10Þ

where BEIS
q ≡ Jn in the notation of Ref. [30] and

1=τ − ln
ffiffiffi
ζ

p ¼ ln½δ−=ðxP−Þ�.
Finally, in the η-regulator and scheme of Chiu-Jain-

Neill-Rothstein (CJNR) in Ref. [32] the Wilson lines in the
proton and vacuum matrix elements are regulated with
factors of j2kzj−η, where k is the momentum of gluons
emitted from the Wilson line, and we have τ ¼ η. In this
scheme the zero-bin subtraction functions vanish, so
S=ðS0S0Þ ¼ S ¼ ffiffiffi

S
p ffiffiffi

S
p

. Therefore the soft factor is

Δq
SðbT; ϵ; τÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SqCJNRðbT; ϵ; ηÞ

q
: ð11Þ

In this approach the regulator is chosen to act symmetri-
cally on the two proton matrix elements, so yn ¼ 0,
ζ ¼ ðxP−Þ2, and the bare beam function is

Bqðx; b⃗T; ϵ; τ; ζÞ ¼ BCJNR
q ðx; b⃗T; ϵ; η; ðxP−Þ2Þ: ð12Þ

The exponential regulator defined in Ref. [37], and used
for the three-loop perturbative computation of γζ in
Ref. [51], has a similar functional dependence in S and
Bq as the η-regulator (though the zero-bin subtraction
functions S0 do not vanish in this case). So far this scheme
has only been used for perturbative calculations, but it
also belongs in the set of TMDPDF definitions governed
by Eq. (4).
In generalBq involves a matrix element with an energetic

hadron moving along the n direction, and encodes the
effect of collinear radiation associated to the hadron h of
momentum P, and SqðbT; ϵ; τÞ is a bare soft vacuum matrix
element which encodes the effect of soft interactions
between the incoming partons. Their precise definitions
depend on the regulator τ, which we leave implicit for
simplicity,

DETERMINING THE NONPERTURBATIVE COLLINS-SOPER … PHYS. REV. D 99, 034505 (2019)

034505-3



Bqðx;b⃗T;ϵ;τ;ζÞ

¼
Z

dbþ

4π
e−i

1
2
bþðxP−ÞhhðPÞj

×

�
q̄ðbμÞWðbμÞγ

−

2
WTð−∞n̄;b⃗T ; 0⃗TÞW†ð0Þqð0Þ

�
τ

jhðPÞi;

ð13Þ

SqðbT; ϵ; τÞ

¼ 1

Nc
h0jTr½S†nðb⃗TÞSn̄ðb⃗TÞSTð−∞n̄; b⃗T ; 0⃗TÞ

× S†n̄ð0⃗TÞSnð0⃗TÞS†Tð−∞n; b⃗T ; 0⃗TÞ�τj0i: ð14Þ

We use the lightcone coordinates b� ¼ b0 ∓ bz, such
that bμ ¼ bþn̄μ=2þ bμT . The Wilson lines appearing in
Eqs. (13) and (14) are defined as path-ordered exponentials,

WðxμÞ ¼ P exp

�
−ig

Z
0

−∞
ds n̄ ·Aðxμ þ sn̄μÞ

�
;

SnðxμÞ ¼ P exp

�
−ig

Z
0

−∞
ds n ·Aðxμ þ snμÞ

�
;

WTðxμ; b⃗T ; 0⃗TÞ ¼ P exp

�
ig
Z

b⃗T

0⃗T

ds⃗T · A⃗Tðxμ þ sμTÞ
�

¼ STðxμ; b⃗T ; 0⃗TÞ: ð15Þ

For clarity, we use a different notation for soft Wilson lines
S and collinear Wilson lines W. The Wilson line paths in
Eqs. (13) and (14) are illustrated in Fig. 1.
The dependence of the TMDPDF on the scales μ and ζ is

governed by the renormalization group equations

μ
d
dμ

fTMD
i ðx; b⃗T; μ; ζÞ ¼ γiμðμ; ζÞfTMD

i ðx; b⃗T; μ; ζÞ;

ζ
d
dζ

fTMD
i ðx; b⃗T; μ; ζÞ ¼

1

2
γiζðμ; bTÞfTMD

i ðx; b⃗T; μ; ζÞ;

μ
d
dμ

γiζðμ; bTÞ ¼ 2ζ
d
dζ

γiμðμ; ζÞ

¼ −2Γi
cusp½αsðμÞ�; ð16Þ

where the second equation is the Collins-Soper equation
[12,13]. It can also be written as a convolution in momen-
tum space [13], where its solution is more complicated
[52]. The combined solution to Eq. (16) yields the
evolution in Eq. (1), where we have chosen a specific path
in the ðμ; ζÞ plane, but one is free to choose any path
connecting ðμ0; ζ0Þ → ðμ; ζÞ since the last equation in
Eq. (16) ensures path independence (see also Ref. [53]).
The subscripts on the anomalous dimensions γiμ and γiζ

label the scale evolution they govern. Their all-order forms
are given by

γiμðμ;ζÞ¼Γi
cusp½αsðμÞ� ln

μ2

ζ
þ γiμ½αsðμÞ�;

γiζðμ;bTÞ¼−2
Z

μ

1=bT

dμ0

μ0
Γi
cusp½αsðμ0Þ�þ γiζ½αsð1=bTÞ�: ð17Þ

They both have a piece governed by the cusp anomalous
dimension Γi

cusp½αs�, and a noncusp piece γi½αs�. Both
anomalous dimension differ for quarks, i ¼ q, and gluons,
i ¼ g, but are independent of the choice of hadron state
and the light quark flavor in the operator in Eq. (13) (for
b-quarks see Ref. [54]). For γiζ this follows because

γiζ ¼ 2
d ln fTMD

i

d ln ζ
¼ 2

d lnBi

d ln ζ
¼ −

d lnBi

dð1=τÞ ¼
d lnΔi

S

dð1=τÞ ; ð18Þ

and Δi
S does not depend on the hadron state.

(b)(a)

FIG. 1. Illustration of the Wilson line structure of (a) the n-collinear beam function Bq and (b) the soft function Sq, defined in Eqs. (13)
and (14). The Wilson lines (solid) extend to infinity in the directions indicated and are joined there by transverse Wilson lines. The τ
dependence that regulates singularities from these Wilson lines is not shown. Adapted from Ref. [37].
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Equation (17) clearly shows that if bT ∼ Λ−1
QCD then

γiζðμ; bTÞ has an intrinsically nonperturbative component.
Once γiζðμ; bTÞ is determined at a scale μ0 ≫ ΛQCD, it can
be perturbatively determined at any scale μ ≫ ΛQCD via

γiζðμ; bTÞ ¼ γiζðμ0; bTÞ − 2

Z
μ

μ0

dμ0

μ0
Γi
cusp½αsðμ0Þ�: ð19Þ

The result for γiζðμ0; bTÞ is known to 3-loop order for
perturbative bT [37,51,55]. The focus of this paper is to
determine γiζðμ0; bTÞ nonperturbatively, which can be used
for the evolution even when bT ∼ Λ−1

QCD.

III. TMDPDFS ON THE LATTICE

While lattice QCD provides a practical tool for first-
principle calculations of nonperturbative quantities, it has
long been challenging to compute lightcone correlators on
the Euclidean lattice due to their real-time dependence.
LaMET has been proposed to overcome this hurdle by
relating the light-cone correlator to an equal-time correlator
in a highly boosted hadron state [7,8]. The latter can be
calculated on lattice, and can then be matched onto the
corresponding lightcone matrix elements through a sys-
tematic expansion in the hadron momentum Pz, as proven
in Refs. [56–58].
Using the LaMET approach, it has been suggested to

calculate TMDPDFs in a similar fashion [9–11]. An earlier
and related approach used in lattice calculations is to
exploit Lorentz invariance for the spacelike correlator
[2,3]. To begin with, we define a bare quasi beam function
in position space as

B̃qðbz; b⃗T; a; L; PzÞ
¼ hhðPÞjq̄ðbμÞWẑðbμ;L − bzÞ

×
Γ
2
WTðLẑ; b⃗T ; 0⃗TÞW†

ẑð0;LÞqð0ÞjhðPÞi; ð20Þ

where bμ ¼ ð0; b⃗T ; bzÞ and a denotes the lattice spacing
which acts as an UV regulator, but for simplicity we stick to
continuum notation for the fields. In Eq. (20), one has either
Γ ¼ γ0 or Γ ¼ γz, as both can be boosted onto γ−. Just like
for the quasi-PDF the choice of Γ ¼ γ0 might be preferred
on the lattice to avoid operator mixing [59–61].
Compared to Eq. (13), in Eq. (20) the lightcone Wilson

lines are replaced by purely spatial Wilson lines of length L
because of the finite lattice size,

Wẑðxμ;LÞ ¼ P exp

�
ig
Z

0

L
dsAzðxμ þ sẑÞ

�
: ð21Þ

This also regulates the analog of rapidity divergences in B̃q,
as has been shown explicitly in Refs. [10,11], and thus L, in
part, takes the role of the rapidity regulator τ in Eq. (13).
The inclusion of transverse gauge links ensures gauge
invariance [62–65]. The resulting Wilson line structure of
Eq. (20) is illustrated in Fig. 2(a). The same correlator in
Eq. (20) has been used in the lattice calculation of ratios of
TMDPDFs with bz ¼ 0 in Refs. [3–6].
Under a Lorentz boost along the z direction with velocity

v → 1 and boost parameter γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, the spatial

separation behaves as ẑ¼ð0;0;0;1Þ→γð−v;0;0;1Þ≈−γn̄.
This boost behavior is illustrated in Fig. 2(b). It is easy to
see that by applying this relation to Eq. (20), one recovers
Eq. (13) in the limit v → 1. This suggests that a matching
between Eqs. (13) and (20) could be possible, similar to the
collinear PDF, up to possible issues from regulating
rapidity divergences, as such regulators necessarily break
boost invariance, see Ref. [11].
For the soft matrix element defined in Eq. (14), a simple

quasiconstruction is not possible, since the Wilson lines
involve both lightcone directions n and n̄, which would
require opposite boosts to be recovered from spatial Wilson
lines along the �ẑ directions. A detailed study of this
issue is given in Ref. [11]. Due to this issue, we will
simply introduce an intrinsically nonperturbative quantity

(b)(a)

FIG. 2. (a): Illustration of the Wilson line structure of the quasi beam function B̃q in Eq. (20). (b): Behavior of a longitudinal separation
bz (blue solid) under a Lorentz boost along the z direction (orange dotted), and its approximate limit −γbzn̄.
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Δ̃q
SðbT; a; LÞ to describe the missing infrared (IR) physics

and dependence on bT .
We define the quasi-TMDPDF in the MS scheme

analogous to Eq. (4) as

f̃TMD
q ðx; b⃗T; μ; PzÞ ¼

Z
dbz

2π
eib

zðxPzÞf̃TMD
q ðbz; b⃗T; μ; PzÞ;

ð22Þ

where the MS position-space quasi-TMDPDF is

f̃TMD
q ðbz; b⃗T; μ; PzÞ ¼ Z̃0ðbz; μ; μ̃ÞZ̃uvðbz; μ̃; aÞ

× B̃qðbz; b⃗T; a; L; PzÞΔ̃q
SðbT; a; LÞ:

ð23Þ

Here the quasi soft factor Δ̃q
S also serves as a counterterm

to cancel L=bT divergences in B̃q. The Z̃uv carries out UV
renormalization, which could be done nonperturbatively
on the lattice, and μ̃ denotes any renormalization scales
this introduces. The conversion factor Z̃0 converts the result
into the MS scheme at the scale μ, which necessarily is
perturbative. On the lattice there will be linear power
divergences ∼1=a coming from the spacelike Wilson-line
self energies. The quasi soft factor Δ̃q

S cancels the L=a
Wilson line self energy divergences appearing in B̃q, which
leaves only bz=a divergences to be canceled by Z̃uv. One
can consider removing these 1=a divergences with a
counterterm determined from the static quark-antiquark
potential as in Ref. [2], or with the RI/MOM scheme like
in the quasi-PDF [59,66], or with the gradient flow
method [67].
In Eq. (23) we suppress the leftover L dependence which

vanishes in the physical limit L → ∞. It would be
interesting to construct a direct proof of these renormaliza-
tion properties of the quasi-TMDPDF, along the lines of
those for the quasi-PDF in Ref. [68,69]. Equation (23) has
been explicitly verified in perturbation theory at one-loop
order, where definitions of Δ̃q

S that cancel all divergences in
L have also been given [10,11].
The quasi-TMDPDF defined in Eq. (22) is not a boost

invariant quantity and thus explicitly depends on the hadron
momentum Pz, which also plays the role of the variable ζ in
the TMDPDF. We will exploit this Pz dependence for our
method to extract γqζ . Importantly, Δ̃q

S does not depend on x
or Pz. It also does not depend on the quark flavor, but
differs from Δ̃g

S for gluons. Thus, Δ̃
q
S drops out of ratios that

are flavor blind, which will be a crucial ingredient to our
proposed method, as one does not need to precisely define
or calculate Δ̃q

S on the lattice. Note that we convert f̃
TMD
q to

the MS scheme with Z̃0 to simplify carrying out the
matching onto the TMDPDF, though matching results
for other schemes could be considered.

A. Relating quasi-TMDPDF and TMDPDF

For the collinear PDF, LaMET gives a perturbative
matching between the quasi-PDF and PDF, and the same
may be true between the quasi beam function and beam
function. However, for the full TMDPDF this matching is
potentially spoiled by the presence of the soft factors Δq

S

and Δ̃q
S that cannot be related simply through a Lorentz

boost. For our purposes, we define gSqðbT; μÞ as the
mismatch of the lightlike and quasi soft factors, which
we allow to be nonperturbative, and we will exploit the fact
that due to its soft origin it is independent of x, Pz, and
quark flavor. For a flavor nonsinglet channel such as u − d
the relation between the MS quasi-TMDPDF and
TMDPDF is thus expected to take the form [11]

f̃TMD
ns ðx; b⃗T; μ; PzÞ ¼ CTMD

ns ðμ; xPzÞgSqðbT; μÞ

× exp

�
1

2
γqζðμ; bTÞ ln

ð2xPzÞ2
ζ

�

× fTMD
ns ðx; b⃗T; μ; ζÞ: ð24Þ

We suppress explicit corrections to Eq. (24) in bT=L,
1=ðbTPzÞ, 1=ðPzLÞ and ΛQCD=Pz arising from the finite
hadron momentum Pz and finite lattice size. Like for the
quasi-PDF [70] there are also hadron mass corrections,
Mh=Pz, which can likely be accounted for exactly. Eq. (24)
has been explicitly verified at one loop in Ref. [11]. It
involves a perturbative short distance coefficient CTMD

ns ,
which is independent of bT . It is multiplicative in x space,
which is known to hold at least to one-loop order [10,11], in
contrast to the quasi-PDF, whose matching onto the PDF
involves a convolution in x [71].
The exponential in Eq. (24) contains the nonperturbative

Collins-Soper kernel γqζðμ; bTÞ that we are after. It guar-
antees that f̃TMD

ns is independent of ζ by balancing the
Collins-Soper evolution of fTMD

ns . This exponential is b⃗T
dependent and thus can not be included in the short-
distance CTMD

ns . The ζ dependence in this exponential is
balanced by ζ̃ ≡ ð2xPzÞ2, which is the Collins-Soper scale
of Eq. (5) away from the lightcone, corresponding with the
z-momentum of the struck quark. For our use of Eq. (24)
we are considering ζ̃ and ζ to be independent variables.
This can be equivalently thought of as having different
values of Pz in the quasi-TMDPDF f̃TMD

ns and TMDPDF
fTMD
ns , where the nonperturbative γqζðμ; bTÞ is then needed

to connect these two different values of Pz. Note that for
our purposes any mismatch in the multiplicative constant in
ζ and ζ̃, the analogs of e−2yn in Eq. (5), can be compensated
by a change to gSq, so we can take these e−2yn constants to
be 1.
If a definition of Δ̃q

S can be found which is calculable on
the lattice and matches the IR physics of Δq

S, then g
S
q would
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become independent of bT and calculable in perturbation
theory. In this case Eq. (24) would become a true matching
relation between the quasi-TMDPDF and TMDPDF. For
our analysis here we will not need to assume such an
operator definition of Δ̃q

S exists.
Note that our result in Eq. (24) differs somewhat from the

analog in Ref. [10]. There the Pz of the quasi-TMDPDF and
TMDPDF were taken to be equal, so the exponential term
involving γqζ does not appear. Also they interpreted the bT
dependence of their gSqðbT; μÞ to be short distance without
considering its nonperturbative nature for bT ∼ Λ−1

QCD, thus
(incorrectly) concluding that Eq. (24) with a nontrivial
gSqðbT; μÞ could still be interpreted as a matching equation.

B. Explicit relation at one loop

One-loop calculations comparing the quark nonsinglet
quasi-TMDPDF and TMDPDF in the MS scheme have
been carried out in Refs. [10,11] in the limit of large Pz and
L. Both employ a spatial quasi soft matrix element Δ̃q

S
obtained by replacing n → ẑ and n̄ → −ẑ in Eq. (14).
Reference [11] separately calculates B̃q and Δ̃q

S, allowing
one to easily verify the structure of Eq. (24). One obtains

CTMD
ns ðμ;xPzÞ¼1þαsCF

4π
Cð1Þðμ;xPzÞþOðα2sÞ;

Cð1Þðμ;xPzÞ¼−ln2
ð2xPzÞ2

μ2
þ2ln

ð2xPzÞ2
μ2

−4þπ2

6
; ð25Þ

gSqðbT; μÞ ¼ 1þ αsCF

2π
ln

b2Tμ
2

4e−2γE
þOðα2sÞ: ð26Þ

The result of Ref. [10] corresponds to combining Eqs. (25)
and (26) as in Eq. (24), and agrees with Ref. [11] up the
factor π2=6 due to a different definition of the MS scheme.
We and Ref. [11] use μ2

MS
¼ 4πe−γEμ2MS, whereas Ref. [10]

uses μ2ϵ
MS

¼ ð4πμ2MSÞϵ=Γð1 − ϵÞ.

IV. EXTRACTING γζ ON LATTICE

The relationbetween thequasi-TMDPDFandTMDPDF in
Eq. (24) allows us to extract γqζðμ; bTÞ using lattice QCD. By
considering the ratio of two copies of Eq. (24) with different
hadron momenta Pz

1 ≠ Pz
2 in the quasi- TMDPDF and the

same ζ in the TMDPDFs, the TMDPDFs and unknown soft
contribution gSq cancel out, yielding our main result

γqζðμ; bTÞ ¼
1

lnðPz
1=P

z
2Þ
ln
CTMD
ns ðμ; xPz

2Þf̃TMD
ns ðx; b⃗T; μ; Pz

1Þ
CTMD
ns ðμ; xPz

1Þf̃TMD
ns ðx; b⃗T; μ; Pz

2Þ

¼ 1

lnðPz
1=P

z
2Þ
ln
CTMD
ns ðμ; xPz

2Þ
R
dbzeib

zxPz
1 Z̃0ðbz; μ; μ̃ÞZ̃uvðbz; μ̃; aÞB̃nsðbz; b⃗T; a; L; Pz

1Þ
CTMD
ns ðμ; xPz

1Þ
R
dbzeib

zxPz
2 Z̃0ðbz; μ; μ̃ÞZ̃uvðbz; μ̃; aÞB̃nsðbz; b⃗T; a; L; Pz

2Þ
: ð27Þ

The first line of Eq. (27) employs the quasi-TMDPDFs
from Eqs. (22) and (23), while in the second line we have
explicitly canceled out the soft factors Δq

SðbT; a; LÞ to
express the result entirely in terms of quasi beam function
and renormalization factors. In the second line the diver-
gences from L → ∞ cancel in the ratio.
It is important to note that γqζ is independent of the choice

for x, Pz
1 and P

z
2 on the right-hand side of Eq. (27), and any

residual dependence on these can thus be used to study
systematic uncertainties. Due to the universality of γqζ ,
Eq. (27) can be evaluated with any hadron state (such as
a pion).
It is currently not clear if the gluon anomalous dimension

γgζðμ; bTÞ can be obtained in the same manner. The concern
is that in the analog of Eq. (23) the gluon could mix with
the singlet quark, making the cancellation of soft factors
problematic since Δ̃q

S ≠ Δ̃g
S. Also γgζðμ; bTÞ cannot be

obtained from γqζðμ; bTÞ with Casimir scaling, which is
violated at Oðα4sÞ for Γi

cusp [72–74] and thus does not hold
for γiζðμ; bTÞ nonperturbatively.

A. Illustration at one loop

For illustration, we explicitly show that we recover the
correct Collins-Soper kernel at one loop. This requires the
ratio of the NLO coefficient Eq. (25),

CTMD
ns ðμ; xPz

2Þ
CTMD
ns ðμ; xPz

1Þ
¼ 1þ αsCF

π
ln
Pz
1

Pz
2

�
ln
4x2Pz

1P
z
2

μ2
− 1

�

þOðα2sÞ; ð28Þ

and likewise the ratio of the perturbative quasi-TMDPDFs,
calculated with on-shell quark states,

f̃TMD
ns ðx; b⃗T; μ; Pz

1Þ
f̃TMD
ns ðx; b⃗T; μ; Pz

2Þ
¼ 1þ αsCF

π
ln
Pz
1

Pz
2

�
− ln

x2Pz
1P

z
2b

2
T

e−2γE
þ 1

�

þOðα2sÞ; ð29Þ

which can be obtained from the results given in Appendix.
Inserting Eqs. (28) and (29) into Eq. (27), we obtain
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γqζðμ; bTÞ ¼
1

ln Pz
1

Pz
2

ln

�
1 −

αsCF

π
ln
Pz
1

Pz
2

ln
b2Tμ

2

4e−2γE
þOðα2sÞ

�

¼ −
αsCF

π
ln

b2Tμ
2

4e−2γE
þOðα2sÞ; ð30Þ

which is exactly the one-loop anomalous dimension.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have proposed a novel approach to
determine from lattice QCD the nonperturbative anomalous
dimension γqζðμ; bTÞ governing the Collins-Soper evolution
of quark TMDPDFs, given in Eq. (27). It involves matrix
elements of an equal-time operator with boosted hadron
states (referred to as quasi beam functions), UV renorm-
alization, and a perturbative short distance kernel CTMD

ns .
These are taken in a ratio with different hadron momentum,
such that soft contributions cancel out. The nonperturbative
contribution to γqζðμ; bTÞ is required in order to evolve
TMDPDFs, determined at some initial scales from experi-
ment (or perhaps in the future a separate lattice calculation),
to the scales appearing in other phenomenological
applications.
So far the coefficient CTMD

ns is known up to one-loop
order for matching an MS quasi-TMDPDF to the MS
TMDPDF. To make use of this result for lattice calculations
using nonperturbative renormalization schemes would
require explicit computations of the corresponding scheme
conversion factor Z̃0 in Eq. (23). Related examples of
nonperturbative renormalization are Refs. [1,2] for straight-
Wilson line quasi-TMDs, Refs. [59,66] for application of
the RI/MOM scheme to the quasi-PDF, and Ref. [67] for
the gradient flow method. First lattice studies of the equal-
time TMD quasi beam function in Eq. (20) have been
carried out in Refs. [3–6]. There, ratios of this quasi beam
function with bz ¼ 0 and the same Pz were considered, in
which case renormalization factors cancel. Our method to
determine γqζ instead requires to Fourier transform the
renormalized results from bz into x space, and consider
a ratio with two different Pz values in order to expose the
Collins-Soper kernel.
A nonperturbative result for γqζðμ; bTÞ could also have

interesting applications for perturbative b−1T ∼ qT ≫ ΛQCD.

Here it is known both from factorization and renormalon
analyses [75,76] that the perturbative series for γqζðμ; bTÞ
has ∼b2TΛ2

QCD power corrections, so one could attempt to
obtain the coefficient of this b2T power correction from the
small bT limit of a nonperturbative lattice QCD result. In
practice this may be difficult due to the need for a 1=ðbTPzÞ
expansion in the relation between the quasi-TMDPDF and
TMDPDF in Eq. (24).
A possible modification to our method is to consider a

boosted quark state rather than a hadron state, which could
have computational advantages. (We thank Will Detmold
for this suggestion.) Since one can only simulate off-shell
gauge-fixed quark states with Euclidean momentum p2

E ≥
ðpzÞ2 in lattice QCD, this would require a reconsideration
of various ingredients in the proposal made here. It would
be interesting to pursue this in the future.
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APPENDIX: (QUASI)-TMDPDF AT NLO

Herewe summarize explicit results for the bare TMDPDF
fTMD
q ðx; b⃗T; ϵ; ζÞ and quasi-TMDPDF f̃TMD

q ðx; b⃗T; ϵ; PzÞ at
one loop. These are obtained by evaluating the operators
Eqs. (13) and (20) in an external quark state of lightlike
momentum pμ ¼ ðxPz; 0; 0; xPzÞ, and combining them
with the appropriate soft or quasi soft function as in
Eqs. (4) and (22) without performing the UV renormaliza-
tion. In both cases, we use pure dimensional regularization
to regulate both UVand IR divergences, and defined theMS
renormalization scale as μ2

MS
¼ 4πe−γEμ2MS.

The result for the physical TMDPDF is given by

fTMD
q ðx; b⃗T; ϵ; ζÞ ¼ δð1 − xÞ þ αsCF

2π

�
−
�

1

ϵIR
þ Lb

�
PqqðxÞ þ ð1 − xÞ

�
1

þ
Θð1 − xÞΘðxÞ

þ αsCF

2π
δð1 − xÞ

�
1

ϵ2UV
þ
�

1

ϵUV
þ Lb

��
3

2
þ ln

μ2

ζ

�
−
1

2
L2
b þ

1

2
−
π2

12

�
þOðα2sÞ: ðA1Þ

This result is obtained in the rapidity regulators of Refs. [15,26,29,32,35,37,44], which only differ by the precise definition
of ζ. For a more detailed comparison of results in the literature see Ref. [11].
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For the quasi-TMDPDF, we take the physical limits Pz ≫ b−1T , L → ∞, and use Δ̃q
S obtained by replacing n → ẑ and

n̄ → −ẑ in Eq. (14). The result has been first calculated in Ref. [10] and was confirmed in Ref. [11],

f̃TMD
q ðx; b⃗T; ϵ; PzÞ ¼ δð1 − xÞ þ αsCF

2π

�
−
�

1

ϵIR
þ Lb

�
PqqðxÞ þ ð1 − xÞ

�
1

þ
Θð1 − xÞΘðxÞ

þ αsCF

2π
δð1 − xÞ

�
3

2

1

ϵUV
−
1

2
L2
Pz − LPz −

3

2
−
1

2
L2
b þ

5

2
Lb þ LbLPz

�
þOðα2sÞ: ðA2Þ

In Eqs. (A1) and (A2), PqqðxÞ ¼ ½ð1þ x2Þ=ð1 − xÞ� is the
quark-quark splitting function, and ½fðxÞ�1þ denotes the
usual plus distribution such that

R
1
0 dx½fðxÞ�1þ ¼ 0. We also

defined

Lb ¼ ln
μ2b2T
4e−2γE

; LPz ¼ ln
μ2

ð2xPzÞ2 ; ðA3Þ

and made the origin of 1=ϵ poles as either IR or UV
divergence explicit.

The UV renormalization factors at NLO in the MS
scheme are given by

Zuvðμ; ϵ; ζÞ ¼ 1 −
αsCF

2π

�
1

ϵ2
þ 1

ϵ

�
3

2
þ ln

μ2

ζ

��
þOðα2sÞ;

Z̃uvðμ; ϵÞ ¼ 1 −
αsCF

2π

3

2ϵ
þOðα2sÞ: ðA4Þ

The difference of Eqs. (A1) and (A2) after UV renormal-
ization yields the one-loop kernel in Eqs. (25) and (26).
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