145 research outputs found

    Interaction of Conical Membrane Inclusions: Effect of Lateral Tension

    Full text link
    Considering two rigid conical inclusions embedded in a membrane subject to lateral tension, we study the membrane-mediated interaction between these inclusions that originates from the hat-shaped membrane deformations associated with the cones. At non-vanishing lateral tensions, the interaction is found to depend on the orientation of the cones with respect to the membrane plane. The interaction of inclusions of equal orientation is repulsive at all distances between them, while the inclusions of opposite orientation repel each other at small separations, but attract each other at larger ones. Both the repulsive and attractive forces become stronger with increasing lateral tension. This is different from what has been predicted on the basis of the same static model for the case of vanishing lateral tension. Without tension, the inclusions repel each other at all distances independently of their relative orientation. We conclude that lateral tension may induce the aggregation of conical membrane inclusions.Comment: 10 pages (revtech), 5 figures (postscript

    Effective free energy for pinned membranes

    Full text link
    We consider membranes adhered through specific receptor-ligand bonds. Thermal undulations of the membrane induce effective interactions between adhesion sites. We derive an upper bound to the free energy that is independent of interaction details. To lowest order in a systematic expansion we obtain two-body interactions which allow to map the free energy onto a lattice gas with constant density. The induced interactions alone are not strong enough to lead to a condensation of individual adhesion sites. A measure of the thermal roughness is shown to depend on the inverse square root of the density of adhesion sites, which is in good agreement with previous computer simulations.Comment: to appear as a Rapid Communication in Phys. Rev.

    The linear tearing instability in three dimensional, toroidal gyrokinetic simulations

    Get PDF
    Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro kinetic turbulence code, GKW . The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate and frequency of the mode were investigated by varying the current profile, collisionality and the pressure gradients. Both collision-less and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absense of a pressure gradient is observed which is attributed to toroidal finite Larmor-radius effects. When a pressure gradient is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However the island rotation reverses direction at high collisionality. The growth rate is found to follow a η1/7\eta^{1/7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability using resistive MHD theory, however a modification due to toroidal coupling and pressure effects is seen

    Random pinning limits the size of membrane adhesion domains

    Full text link
    Theoretical models describing specific adhesion of membranes predict (for certain parameters) a macroscopic phase separation of bonds into adhesion domains. We show that this behavior is fundamentally altered if the membrane is pinned randomly due to, e.g., proteins that anchor the membrane to the cytoskeleton. Perturbations which locally restrict membrane height fluctuations induce quenched disorder of the random-field type. This rigorously prevents the formation of macroscopic adhesion domains following the Imry-Ma argument [Y. Imry and S. K. Ma, Phys. Rev. Lett. 35, 1399 (1975)]. Our prediction of random-field disorder follows from analytical calculations, and is strikingly confirmed in large-scale Monte Carlo simulations. These simulations are based on an efficient composite Monte Carlo move, whereby membrane height and bond degrees of freedom are updated simultaneously in a single move. The application of this move should prove rewarding for other systems also.Comment: revised and extended versio

    Fluctuation induced interactions between domains in membranes

    Full text link
    We study a model lipid bilayer composed of a mixture of two incompatible lipid types which have a natural tendency to segregate in the absence of membrane fluctuations. The membrane is mechanically characterized by a local bending rigidity κ(ϕ)\kappa(\phi) which varies with the average local lipid composition ϕ\phi. We show, in the case where κ\kappa varies weakly with ϕ\phi, that the effective interaction between lipids of the same type can either be everywhere attractive or can have a repulsive component at intermediate distances greater than the typical lipid size. When this interaction has a repulsive component, it can prevent macro-phase separation and lead to separation in mesophases with a finite domain size. This effect could be relevant to certain experimental and numerical observations of mesoscopic domains in such systems.Comment: 9 pages RevTex, 1 eps figur

    Dynamic phase separation of fluid membranes with rigid inclusions

    Full text link
    Membrane shape fluctuations induce attractive interactions between rigid inclusions. Previous analytical studies showed that the fluctuation-induced pair interactions are rather small compared to thermal energies, but also that multi-body interactions cannot be neglected. In this article, it is shown numerically that shape fluctuations indeed lead to the dynamic separation of the membrane into phases with different inclusion concentrations. The tendency of lateral phase separation strongly increases with the inclusion size. Large inclusions aggregate at very small inclusion concentrations and for relatively small values of the inclusions' elastic modulus.Comment: 6 pages, 6 figure

    Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    Get PDF
    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF)

    Impermeability effects in three-dimensional vesicles

    Full text link
    We analyse the effects that the impermeability constraint induces on the equilibrium shapes of a three-dimensional vesicle hosting a rigid inclusion. A given alteration of the inclusion and/or vesicle parameters leads to shape modifications of different orders of magnitude, when applied to permeable or impermeable vesicles. Moreover, the enclosed-volume constraint wrecks the uniqueness of stationary equilibrium shapes, and gives rise to pear-shaped or stomatocyte-like vesicles.Comment: 16 pages, 7 figure

    Curvature-coupling dependence of membrane protein diffusion coefficients

    Full text link
    We consider the lateral diffusion of a protein interacting with the curvature of the membrane. The interaction energy is minimized if the particle is at a membrane position with a certain curvature that agrees with the spontaneous curvature of the particle. We employ stochastic simulations that take into account both the thermal fluctuations of the membrane and the diffusive behavior of the particle. In this study we neglect the influence of the particle on the membrane dynamics, thus the membrane dynamics agrees with that of a freely fluctuating membrane. Overall, we find that this curvature-coupling substantially enhances the diffusion coefficient. We compare the ratio of the projected or measured diffusion coefficient and the free intramembrane diffusion coefficient, which is a parameter of the simulations, with analytical results that rely on several approximations. We find that the simulations always lead to a somewhat smaller diffusion coefficient than our analytical approach. A detailed study of the correlations of the forces acting on the particle indicates that the diffusing inclusion tries to follow favorable positions on the membrane, such that forces along the trajectory are on average smaller than they would be for random particle positions.Comment: 16 pages, 8 figure
    corecore