1,066 research outputs found
Beyond economic efficiency in biodiversity conservation
This paper aims at explaining the importance of the democracy stance as compared to the efficiency stance in order to deal with complexity in biodiversity conservation. While the efficiency stance refers to the realm of relatively simple systems, individual rationality, and instrumental values, the complexity stance transcends these boundaries into the realm of complex systems, social rationality and intrinsic values. We argue that the task of biodiversity conservation is impossible to achieve in economically efficient ways, because (a) it is impossible to come to a (fully informed) complete account of all values, not only because it is costly but also because (b) moral values are involved which (by their nature) exclude themselves from being accounted for, and (c) biodiversity conservation can be regarded as an end in itself instead of only a means towards an end. The point we raise is, that in order to cope with biodiversity conservation we need to apply valuation methods which are from the complexity stance, take better account of intrinsic values and feelings, as well as consider social rationality. Economic valuation methods are themselves 'value articulating institutions' and as biodiversity conservation confronts us with the complexity of social-ecological systems, the choice of the 'value articulating institutions' needs to consider their ability to capture instrumental and intrinsic values of biodiversity. We demonstrate a method, based on cybernetics, which is able to take into account the issues raised
Maclyn McCarty (1911-2005)
"If I have seen further, it is by standing on the shoulders of giants" (letter of Isaac Newton to Robert Hooke). This well-known sentence of Newton finds its correct meaning in biology through the work of Oswald Avery (1877-1955), Colin MacLeod (1909-1972), and Maclyn McCarty (1911-2005) that was published in 1944 in The Journal of Experimental Medicine, which showed that DNA carried genetic information. These giants of molecular biology attained scientific evidence to provide shoulders strong enough to allow Crick and Watson to build on the foundations laid down by this group to postulate, 9 years later, the double-helix model of DNA. Maclyn McCarty died in New York on January 3, 2005, at age 93. At the time of his death, he was an active editor of the above-mentioned journal, which is published by The Rockefeller University.Peer reviewe
The zebrafish cerebellar rhombic lip is spatially patterned in producing granule cell populations of different functional compartments
AbstractThe upper rhombic lip, a prominent germinal zone of the cerebellum, was recently demonstrated to generate different neuronal cell types over time from spatial subdomains. We have characterized the differentiation of the upper rhombic lip derived granule cell population in stable GFP-transgenic zebrafish in the context of zebrafish cerebellar morphogenesis. Time-lapse analysis followed by individual granule cell tracing demonstrates that the zebrafish upper rhombic lip is spatially patterned along its mediolateral axis producing different granule cell populations simultaneously. Time-lapse recordings of parallel fiber projections and retrograde labeling reveal that spatial patterning within the rhombic lip corresponds to granule cells of two different functional compartments of the mature cerebellum: the eminentia granularis and the corpus cerebelli. These cerebellar compartments in teleosts correspond to the mammalian vestibulocerebellar and non-vestibulocerebellar system serving balance and locomotion control, respectively. Given the high conservation of cerebellar development in vertebrates, spatial partitioning of the mammalian granule cell population and their corresponding earlier-produced deep nuclei by patterning within the rhombic lip may also delineate distinct functional compartments of the cerebellum. Thus, our findings offer an explanation for how specific functional cerebellar circuitries are laid down by spatio-temporal patterning of cerebellar germinal zones during early brain development
Nucleation and phase selection in undercooled melts: Magnetic alloys of industrial relevance (MAGNEPHAS)
Studies of phase selection and microstructure evolution in high-performance magnetic materials are an urgent need for optimization of production routes. Containerless solidification experiments by electromagnetic levitation and drop tube solidification were conducted in undercooled melts of Fe-Co, Fe-Ni soft magnetic, and Nd-Fe-B hard magnetic alloys. Melt undercooling under microgravity was achieved in the TEMPUS facility during parabolic flight campaigns. For Fe-Co and Fe-Ni alloys significant effects of microgravity on metastable phase formation were discovered. Microstructure modifications as well as metastable phase formation as function of undercooling and melt flow were elucidated in Nd-Fe-B. Modeling of solidification processes, fluid flow and heat transfer provide predictive tools for microstructure engineering from the melt. They were developed as a link between undercooling experiments under terrestrial and microgravity conditions and the production routes of magnetic materials
Magnesium-containing mixed coatings on zirconia for dental implants: mechanical characterization and in vitro behavior
An important challenge in the field of dental and orthopedic implantology is the preparation of implant coatings with bioactive functions that feature a high mechanical stability and at the same time mimic structural and compositional properties of native bone for a better bone ingrowth. This study investigates the influence of magnesium addition to zirconia-calcium phosphate coatings. The mixed coatings were prepared with varying additions of either magnesium oxide or magnesium fluoride to yttria-stabilized zirconia and hydroxyapatite. The coatings were deposited on zirconia discs and screw implants by wet powder spraying. Microstructure studies confirm a porous coating with similar roughness and firm adhesion not hampered by the coating composition. The coating morphology, mechanical flexural strength and calcium dissolution showed a magnesium content-dependent effect. Moreover, the in vitro results obtained with human osteoblasts reveal an improved biological performance caused by the presence of Mg2+ ions. The magnesiumcontaining coatings exhibited better cell proliferation and differentiation in comparison to pure zirconia-calcium phosphate coatings. In conclusion, these results demonstrate that magnesium addition increases the bioactivity potential of zirconia-calcium phosphate coatings and is thus a highly suitable candidate for bone implant coatings
A lattice gas model of II-VI(001) semiconductor surfaces
We introduce an anisotropic two-dimensional lattice gas model of metal
terminated II-IV(001) seminconductor surfaces. Important properties of this
class of materials are represented by effective NN and NNN interactions, which
result in the competition of two vacancy structures on the surface. We
demonstrate that the experimentally observed c(2x2)-(2x1) transition of the
CdTe(001) surface can be understood as a phase transition in thermal
equilbrium. The model is studied by means of transfer matrix and Monte Carlo
techniques. The analysis shows that the small energy difference of the
competing reconstructions determines to a large extent the nature of the
different phases. Possible implications for further experimental research are
discussed.Comment: 7 pages, 2 figure
The generalized 3-edge-connectivity of lexicographic product graphs
The generalized -edge-connectivity of a graph is a
generalization of the concept of edge-connectivity. The lexicographic product
of two graphs and , denoted by , is an important graph
product. In this paper, we mainly study the generalized 3-edge-connectivity of
, and get upper and lower bounds of .
Moreover, all bounds are sharp.Comment: 14 page
- …