22 research outputs found

    Alterations of immune response of non-small lung cancer with azacytidine

    Get PDF
    Innovative therapies are needed for advanced Non-Small Cell Lung Cancer (NSCLC). We have undertaken a genomics based, hypothesis driving, approach to query an emerging potential that epigenetic therapy may sensitize to immune checkpoint therapy targeting PD-L1/PD-1 interaction. NSCLC cell lines were treated with the DNA hypomethylating agent azacytidine (AZA - Vidaza) and genes and pathways altered were mapped by genome-wide expression and DNA methylation analyses. AZA-induced pathways were analyzed in The Cancer Genome Atlas (TCGA) project by mapping the derived gene signatures in hundreds of lung adeno (LUAD) and squamous cell carcinoma (LUSC) samples. AZA up-regulates genes and pathways related to both innate and adaptive immunity and genes related to immune evasion in a several NSCLC lines. DNA hypermethylation and low expression of IRF7, an interferon transcription factor, tracks with this signature particularly in LUSC. In concert with these events, AZA up-regulates PD-L1 transcripts and protein, a key ligand-mediator of immune tolerance. Analysis of TCGA samples demonstrates that a significant proportion of primary NSCLC have low expression of AZA-induced immune genes, including PD-L1. We hypothesize that epigenetic therapy combined with blockade of immune checkpoints - in particular the PD-1/PD-L1 pathway - may augment response of NSCLC by shifting the balance between immune activation and immune inhibition, particularly in a subset of NSCLC with low expression of these pathways. Our studies define a biomarker strategy for response in a recently initiated trial to examine the potential of epigenetic therapy to sensitize patients with NSCLC to PD-1 immune checkpoint blockade

    BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells

    Get PDF
    Naive mouse embryonic stem cells (mESCs) are in a metastable state and fluctuate between inner cell mass- and epiblast-like phenotypes. Here, we show transient activation of the BMP-SMAD signaling pathway in mESCs containing a BMP-SMAD responsive reporter transgene. Activation of the BMP-SMAD reporter transgene in naive mESCs correlated with lower levels of genomic DNA methylation, high expression of 5-methylcytosine hydroxylases Tet1/2 and low levels of DNA methyltransferases Dnmt3a/b. Moreover, naive mESCs, in which the BMP-SMAD reporter transgene was activated, showed higher resistance to differentiation. Using double Smad1;Smad5 knockout mESCs, we showed that BMP-SMAD signaling is dispensable for self-renewal in both naive and ground state. These mutant mESCs were still pluripotent, but they exhibited higher levels of DNA methylation than their wild-type counterparts and had a higher propensity to differentiate. We showed that BMP-SMAD signaling modulates lineage priming in mESCs, by transiently regulating the enzymatic machinery responsible for DNA methylation

    A four gene methylation marker panel as triage test in hr-HPV positive patients

    No full text
    Cervical neoplasia specific biomarkers, e.g. DNA methylation markers, with high sensitivity and specificity are urgently needed to improve current population-based screening on (pre)malignant cervical neoplasia. We aimed to identify new cervical neoplasia specific DNA methylation markers and to design and validate a methylation marker panel for triage of high risk (hr)-HPV positive patients. First, high through-put quantitative methylation specific PCRs (QMSP) on a novel OpenArray platform, representing 424 primers of 213 cancer specific methylated genes, were performed on frozen tissue samples from 84 cervical cancer patients and 106 normal cervices. Second, the top 20 discriminating methylation markers were validated by LightCycler(R) MSP on frozen tissue from 27 cervical cancer patients and 20 normal cervices and ROCs and test characteristics were assessed. Three new methylation markers were identified (JAM3, EPB41L3 and TERT), which were subsequently combined with C13ORF18 in our 4-gene methylation panel. In a third step, our methylation panel detected in cervical scrapings 94% (70/74) of cervical cancers, while in a fourth step 82% (32/39) cervical intraepithelial neoplasia grade 3 or higher (CIN3+) and 65% (44/68) CIN2+ were detected, with 21% positive cases for </=CIN1 (16/75). Finally, hypothetical scenario analysis showed that primary hr-HPV testing combined with our 4-gene methylation panel as a triage test resulted in a higher identification of CIN3 and cervical cancers and a higher percentage of correct referrals compared to hr-HPV testing in combination with conventional cytology. In conclusion, our 4-gene methylation panel might provide an alternative triage test after primary hr-HPV testing

    MEN1 Gene Mutation and Reduced Expression Are Associated with Poor Prognosis in Pulmonary Carcinoids

    No full text
    Context: MEN1 gene alterations have been implicated in lung carcinoids, but their effect on gene expression and disease outcome are unknown. Objective: To analyse MEN1 gene and expression anomalies in lung neuroendocrine neoplasms (NENs) and their correlations with clinicopathologic data and disease outcome. Design: We examined 74 lung NENs including 58 carcinoids and 16 high-grade neuroendocrine carcinomas (HGNECs) for MEN1 mutations (n=70) and allelic losses (n=69), promoter hypermethylation (n=65), and mRNA (n=74) expression. Results were correlated with disease outcome. Results: MEN1 mutations were found in 7/55 (13%) carcinoids and in 1 HGNEC, mostly associated with loss of the second allele. MEN1 decreased expression levels correlated with the presence of mutations (P=0.0060) and was also lower in HGNECs than carcinoids (P=0.0024). MEN1 methylation was not associated with mRNA expression levels. Patients with carcinoids harbouring MEN1 mutation and loss had shorter overall survival (P=0.039 and P=0.035, respectively), and low MEN1 mRNA levels correlated with distant metastasis (P=0.00010) and shorter survival (P=0.0071). In multivariate analysis, stage and MEN1 allelic loss were independent predictors of prognosis. Conclusion: Thirteen percent of pulmonary carcinoids harbour MEN1 mutation, associated with reduced mRNA expression and poor prognosis. Also in mutation-negative tumours, low MEN1 gene expression correlates with an adverse disease outcome. Hypermethylation was excluded as the underlying mechanism

    The CpG Island Methylator Phenotype: What's in a Name?

    No full text
    Although the CpG island methylator phenotype (CIMP) was first identified and has been most extensively studied in colorectal cancer, the term "CIMP" has been repeatedly used over the past decade to describe CpG island promoter methylation in other tumor types, including bladder, breast, endometrial, gastric, glioblastoma (gliomas), hepatocellular, lung, ovarian, pancreatic, renal cell, and prostate cancers, as well as for leukemia, melanoma, duodenal adenocarninomas, adrenocortical carcinomas, and neuroblastomas. CIMP has been reported to be useful for predicting prognosis and response to treatment in a variety of tumor types, but it remains unclear whether or not CIMP is a universal phenomenon across human neoplasia or if there should be cancer-specific definitions of the phenotype. Recently, it was shown that somatic isocitrate dehydrogenase-1 (IDH1) mutations, frequently observed in gliomas, establish CIMP in primary human astrocytes by remodeling the methylome. Interestingly, somatic IDH1 and IDH2 mutations, and loss-of-function mutations in ten-eleven translocation (TET) methylcytosine dioxygenase-2 (TET2) associated with a hypermethylation phenotype, are also found in multiple enchondromas of patients with Ollier disease and Mafucci syndrome, and leukemia, respectively. These data provide the first clues for the elucidation of a molecular basis for CIMP. Although CIMP appears as a phenomenon that occurs in various cancer types, the definition is poorly defined and differs for each tumor. The current perspective discusses the use of the term CIMP in cancer, its significance in clinical practice, and future directions that may aid in identifying the true cause and definition of CIMP in different forms of human neoplasia. (c) 2013 AACR

    DNA methylation of phosphatase and actin regulator 3 detects colorectal cancer in stool and complements FIT

    No full text
    Using a bioinformatics-based strategy, we set out to identify hypermethylated genes that could serve as biomarkers for early detection of colorectal cancer (CRC) in stool. In addition, the complementary value to a Fecal Immunochemical Test (FIT) was evaluated. Candidate genes were selected by applying cluster alignment and computational analysis of promoter regions to microarray-expression data of colorectal adenomas and carcinomas. DNA methylation was measured by quantitative methylation-specific PCR on 34 normal colon mucosa, 71 advanced adenoma, and 64 CRC tissues. The performance as biomarker was tested in whole stool samples from in total 193 subjects, including 19 with advanced adenoma and 66 with CRC. For a large proportion of these series, methylation data for GATA4 and OSMR were available for comparison. The complementary value to FIT was measured in stool subsamples from 92 subjects including 44 with advanced adenoma or CRC. Phosphatase and Actin Regulator 3 (PHACTR3) was identified as a novel hypermethylated gene showing more than 70-fold increased DNA methylation levels in advanced neoplasia compared with normal colon mucosa. In a stool training set, PHACTR3 methylation showed a sensitivity of 55% (95% CI: 33-75) for CRC and a specificity of 95% (95% CI: 87-98). In a stool validation set, sensitivity reached 66% (95% CI: 50-79) for CRC and 32% (95% CI: 14-57) for advanced adenomas at a specificity of 100% (95% CI: 86-100). Adding PHACTR3 methylation to FIT increased sensitivity for CRC up to 15%. PHACTR3 is a new hypermethylated gene in CRC with a good performance in stool DNA testing and has complementary value to FIT

    GATA4 and GATA5 are Potential Tumor Suppressors and Biomarkers in Colorectal Cancer

    Get PDF
    Purpose: The transcription factors GATA4 and GATA5 are involved in gastrointestinal development and are inactivated by promoter hypermethylation in colorectal cancer. Here, we evaluated GATA4/5 promoter methylation as potential biomarkers for noninvasive colorectal cancer detection, and investigated the role of GATA4/5 in colorectal cancer. Experimental Design: Promoter methylation of GATA4/5 was analyzed in colorectal tissue and fecal DNA from colorectal cancer patients and healthy controls using methylation-specific PCR. The potential function of GATA4/5 as tumor suppressors was studied by inducing GATA4/5 overexpression in human colorectal cancer cell lines. Results: GATA4/5 methylation was observed in 70% (63/90) and 79% (61/77) of colorectal carcinomas, respectively, and was independent of clinicopathologic features. Methylation frequencies in normal colon tissues from noncancerous controls were 6% (5 of 88, GATA4; P < 0.001) and 13% (13 of 100, GATA5; P < 0.001). GATA4/5 overexpression suppressed colony formation (P < 0.005), proliferation (P < 0.001), migration (P < 0.05), invasion (P < 0.05), and anchorage-independent growth (P < 0.0001) of colorectal cancer cells. Examination of GATA4 methylation in fecal DNA from two independent series of colorectal cancer patients and controls yielded a sensitivity of 71% [95% confidence interval (95% Cl), 55-88%] and specificity of 84% (95% Cl, 74-95%) for colorectal cancer detection in the training set, and a sensitivity of 51% (95% Cl, 37-65%) and specificity of 93% (95% Cl, 84-100%) in the validation set. Conclusions: Methylation of GATA4/5 is a common and specific event in colorectal carcinomas, and GATA4/5 exhibit tumor suppressive effects in colorectal cancer cells in vitro. GATA4 methylation in fecal DNA may be of interest for colorectal cancer detection
    corecore