7 research outputs found

    Complex Aggregates over Clusters of Elements

    Get PDF
    Complex aggregates have been proposed as a way to bridge the gap between approaches that handle sets by imposing conditions on specific elements, and approaches that handle them by imposing conditions on aggregated values. A complex aggregate summarises a subset of the elements in a set, where this subset is defined by conditions on the attribute values. In this paper, we present a new type of complex aggregate, where this subset is defined to be a cluster of the set. This is useful if subsets that are relevant for the task at hand are difficult to describe in terms of attribute conditions. This work is motivated from the analysis of flow cytometry data, where the sets are cells, and the subsets are cell populations. We describe two approaches to aggregate over clusters on an abstract level, and validate one of them empirically, motivating future research in this direction

    Fast relational learning using bottom clause propositionalization with artificial neural networks

    Get PDF
    Relational learning can be described as the task of learning first-order logic rules from examples. It has enabled a number of new machine learning applications, e.g. graph mining and link analysis. Inductive Logic Programming (ILP) performs relational learning either directly by manipulating first-order rules or through propositionalization, which translates the relational task into an attribute-value learning task by representing subsets of relations as features. In this paper, we introduce a fast method and system for relational learning based on a novel propositionalization called Bottom Clause Propositionalization (BCP). Bottom clauses are boundaries in the hypothesis search space used by ILP systems Progol and Aleph. Bottom clauses carry semantic meaning and can be mapped directly onto numerical vectors, simplifying the feature extraction process. We have integrated BCP with a well-known neural-symbolic system, C-IL2P, to perform learning from numerical vectors. C-IL2P uses background knowledge in the form of propositional logic programs to build a neural network. The integrated system, which we call CILP++, handles first-order logic knowledge and is available for download from Sourceforge. We have evaluated CILP++ on seven ILP datasets, comparing results with Aleph and a well-known propositionalization method, RSD. The results show that CILP++ can achieve accuracy comparable to Aleph, while being generally faster, BCP achieved statistically significant improvement in accuracy in comparison with RSD when running with a neural network, but BCP and RSD perform similarly when running with C4.5. We have also extended CILP++ to include a statistical feature selection method, mRMR, with preliminary results indicating that a reduction of more than 90 % of features can be achieved with a small loss of accuracy

    Neural networks for relational learning: an experimental comparisonn

    Get PDF
    In the last decade, connectionist models have been proposed that can process structured information directly. These methods, which are based on the use of graphs for the representation of the data and the relationships within the data, are particularly suitable for handling relational learning tasks. In this paper, two recently proposed architectures of this kind, i.e. Graph Neural Networks (GNNs) and Relational Neural Networks (RelNNs), are compared and discussed, along with their corresponding learning schemes. The goal is to evaluate the performance of these methods on benchmarks that are commonly used by the relational learning community. Moreover, we also aim at reporting differences in the behavior of the two models, in order to gain insights on possible extensions of the approaches. Since RelNNs have been developed with the specific task of learning aggregate functions in mind, some experiments are run considering that particular task. In addition, we carry out more general experiments on the mutagenesis and the biodegradability datasets, on which several other relational learners have been evaluated. The experimental results are promising and suggest that RelNNs and GNNs can be a viable approach for learning on relational data

    Refining aggregate conditions in relational learning

    No full text
    In relational learning, predictions for an individual are based not only on its own properties but also on the properties of a set of related individuals. Many systems use aggregates to summarize this set. Features thus introduced compare the result of an aggregate function to a threshold. We consider the case where the set to be aggregated is generated by a complex query and present a framework for refining such complex aggregate conditions along three dimensions: the aggregate function, the query used to generate the set, and the threshold value. The proposed aggregate refinement operator allows a more efficient search through the hypothesis space and thus can be beneficial for many relational learners that use aggregates. As an example application, we have implemented the refinement operator in a relational decision tree induction system. Experimental results show a significant efficiency gain in comparison with the use of a less advanced refinement operator

    Supervised Neural Network Models for Processing Graphs

    No full text
    In this chapter, we will show how an agent based on artificial neural networks (ANNs) can be designed in order to naturally process structured input data en- coded as graphs. Graph Neural Networks (GNNs) [23] are an extension of classical MultiLayer Perceptrons (MLPs) that accept input data encoded as general undi- rected/directed labeled graphs. GNNs are provided with a supervised learning al- gorithm that, beside the classical input-output data fitting measure, incorporates a criterion aimed at the development of a contractive dynamics, in order to properly process the cycles in the input graph. A GNN processes a graph in input and it can be naturally employed to compute an output for each node in the graph (node–focused computation). The training examples are provided as graphs for which supervisions are given as output target values for a subset of their nodes. This processing scheme can be adapted to perform a graph–based computation in which only one output is computed for the whole graph

    Deep Neural Networks for Structured Data

    No full text
    Learning machines for pattern recognition, such as neural networks or support vector machines, are usually conceived to process real–valued vectors with predefined dimensionality even if, in many real–world applications, relevant information is inherently organized into entities and relationships between them. Instead, Graph Neural Networks (GNNs) can directly process structured data, guaranteeing universal approximation of many practically useful functions on graphs. GNNs, that do not strictly meet the definition of deep architectures, are based on the unfolding mechanism during learning, that, in practice, yields networks that have the same depth of the data structures they process. However, GNNs may be hindered by the long–term dependency problem, i.e. the difficulty in taking into account information coming from peripheral nodes within graphs — due to the local nature of the procedures for updating the state and the weights. To overcome this limitation, GNNs may be cascaded to form layered architectures, called Layered GNNs (LGNNs). Each GNN in the cascade is trained based on the original graph “enriched” with the information computed by the previous layer, to implement a sort of incremental learning framework, able to take into account progressively further information. The applicability of LGNNs will be illustrated both with respect to a classical problem in graph–theory and to pattern recognition problems in bioinformatics
    corecore