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Abstract. Complex aggregates have been proposed as a way to bridge
the gap between approaches that handle sets by imposing conditions on
specific elements, and approaches that handle them by imposing condi-
tions on aggregated values. A complex aggregate summarises a subset
of the elements in a set, where this subset is defined by conditions on
the attribute values. In this paper, we present a new type of complex
aggregate, where this subset is defined to be a cluster of the set. This
is useful if subsets that are relevant for the task at hand are difficult to
describe in terms of attribute conditions. This work is motivated from
the analysis of flow cytometry data, where the sets are cells, and the
subsets are cell populations. We describe two approaches to aggregate
over clusters on an abstract level, and validate one of them empirically,
motivating future research in this direction.
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1 Introduction

In relational learning, examples are described by data residing in multiple tables
of a relational database, linked together via one-to-one, one-to-many or many-
to-many relationships. The latter two types of relationships result in single ex-
amples being related to a set of objects, and require mechanisms to deal with
such sets. While, traditionally, relational learning approaches handled sets by
either looking at properties of individual elements or by aggregating over them,
a number of researchers [12, 14, 17, 20, 21] have looked into the combination of
these approaches, resulting in so-called complex aggregates. Such complex ag-
gregates aggregate over a subset of the elements of a set, where the subset is
usually defined by imposing conditions on some attribute values. For instance,
consider the widely used Mutagenesis dataset [18] of molecules that are classi-
fied as mutagenic or not, and are described by their atoms and bonds. Thus, any
molecule is related to a set of atoms and bonds. A complex aggregate in this
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context is the number of carbon atoms of a molecule: it consists of an aggregation
(namely, count) over a subset of the atoms (namely, the carbon atoms). Another
example is the maximum charge of the atoms that are bound to a carbon atom.
While for this application it makes sense to describe subsets of atoms by im-
posing conditions on their element or on the atoms they are bound to, for other
applications it is less obvious how to describe useful subsets based on attribute
conditions or on related objects. In flow cytometry data analysis for instance,
one deals with patient samples (e.g., blood samples), which are described by the
individual cells they contain. Each cell in turn is described by some 20 numeric
fluorescence intensities. For certain auto-immunity diseases, it is known that the
number of cells of a particular cell population (e.g., B-cells, eosinophils,. . . ) is
affected. These cell populations are difficult to describe in terms of conditions
on the intensity markers, however. They are usually detected by a (manual)
clustering procedure over the set of cells. Thus, for such applications, it makes
sense to aggregate over subsets defined by clusters instead of defined by attribute
conditions.

The contributions of this paper are the following: (1) We present a new type
of complex aggregate: aggregates over clusters; (2) We motivate this from a
real world example, namely flow cytometry data analysis; (3) We present a first
approach to use aggregates over clusters; (4) By showing promising results on
both a synthetic and a real world dataset, we motivate future research in this
direction.

2 Related work

Traditionally, relational learners typically handled sets in one of two approaches.
The first approach handled sets by checking properties of specific elements. Most
inductive logic programming (ILP) [15] systems use this approach, using the
existential quantifier to check individual elements. The second approach handled
sets by aggregating over them, reducing a complete set to one or a few values
(e.g., number of elements in the set, average value of one of the attributes of
the set,. . . ). Examples of this approach include probabilistic relational models
[13] and relational probability trees [16]. Blockeel and Bruynooghe [5] discussed
the resulting - often undesirable - bias on these learners, and proposed the idea
of combining aggregation and selection. Challenges in this combination are the
large number of features that may be generated and the fact that it is more
difficult to traverse the feature space in a structured and efficient way.

Krogel and Wrobel [14] introduced aggregate functions that apply not only to
single attributes, but also to pairs of attributes, one of which has to be nominal
and serves as a group by condition. The resulting aggregate conditions are still of
limited complexity and are not refined further during the search. Knobbe et al.
[12] proposed a method for subsequently specializing the set to be aggregated. By
restricting the application of this specialization operator to aggregate functions
where its effect is well-understood, they can search the hypothesis space in a
general-to-specific way, but this obviously limits the kind of complex conditions



that can be found. Uwents and Blockeel [20] described relational neural networks
as a subsymbolic approach towards learning complex aggregates. Their approach
is not constrained to using predefined aggregate functions and does not make a
distinction between searching for aggregate functions and searching for complex
conditions, but the resulting theories are also not interpretable in terms of well-
understood aggregates and conditions.

Van Assche et al. [21] have made the first implementation of combined ag-
gregates and selections in an ILP system. They have extended the refinement
operator of the relational decision tree learner Tilde [3] to include so-called com-
plex aggregates: literals of the form F (V,Q,R), where F is an aggregate function
(e.g., count), V is an aggregate variable occurring in the aggregate query Q, and
R is the result of applying F to the set of all answer substitutions for V that
Q results in (we will call this set the result set of Q). A complex aggregate is
usually followed by a condition on this result set. The “complex” part of a com-
plex aggregate refers to Q being arbitrarily complex. A complex aggregate can
be constructed by iterative refinement of Q, starting with a general query (e.g.,
the number of atoms of a molecule) and ending with a very specific one (e.g.,
the number of carbon atoms bound with an aromatic bond type to an atom
with charge larger than 0.06). The feature explosion resulting from combining
aggregate functions with selection conditions was handled by upgrading Tilde
to a random forest [21] and taking advantage of the feature sampling applied at
each node of the trees. Charnay et al. [6] have recently proposed an alternative
solution, by introducing a hill-climbing approach to build complex aggregates
incrementally.

Other types of complex aggregates that have been proposed include count-of-
count features, which are a kind of nested aggregate, and have been introduced
by [9, 11] in the type extension tree representation language. An example of such
a feature is the complete specification of how many atoms that are present in
the molecule to be classified are bound to how many atoms with an aromatic
bond type.

Frank et al. [8] have introduced multi-feature aggregation functions in rela-
tional learning. In this setting the aggregate variable V is replaced by a set of
variables, and this allows the use of aggregate functions like correlation or slope
of line of best fit.

3 Case study: Flow cytrometry data analysis

Flow cytometry [1, 10] allows to quantify different cell populations in large num-
bers of cells, by suspending the cells in a stream of fluid and passing them
through a laser beam, while measuring the resulting fluorescent and scattered
light. Flow cytometry is applied both in clinical settings (in the diagnosis of
health disorders) and in research settings. For every input sample, 10,000 up to
1,000,000 cells are measured, each described by 10 up to 20 features. However,
recent technological advances in flow cytometry result in techniques that will
be able to measure up to 100 dimensions. Standard practice is that pathologists



or researchers manually detect different cell populations in the sample by itera-
tively identifying regions of interest in two-dimensional scatter plots, a process
that is labor-intensive and subjective.

One of the first steps in the automatic analysis of this type of data is the use
of clustering techniques to identify populations of cells in an objective and re-
producible way. Important challenges for clustering these datasets include: pop-
ulations with different densities; populations that are not elliptic-shaped; rare
populations that can be easily confused with noise; hierarchical populations that
consist of several sub-types;... Another challenge is that cells can be in transition
from one population to another, and thus can belong to several clusters at the
same time. As individual patient samples may consist of tens of thousands up to
millions of cells, and clinical datasets often consist of hundreds of patient sam-
ples, scalability is an important aspect as well. For all these reasons, a number
of dedicated clustering techniques for flow cytometry data have been developed
[2, 7, 19, 23].

Another important task in the automatic analysis of flow cytometry data
is classifying the samples into different groups. This can serve several medical
purposes: are they healthy or sick; which variant of the disease do they have;
does the medicine work or not? In research settings, the goal often is to learn
about which features or cell types are important to differentiate between the
groups. Manually, properties of the clusters, such as the relative cell count from
a certain cell type, are used to analyze the data. By using automatic data mining
techniques, we can make this process easier and more objective. One possible
approach is to use propositionalization, based on the cell clusters that have been
manually or automatically detected. This requires that the clusters of the dif-
ferent patients are aligned, i.e. corresponding clusters need to be identified. This
can be done by performing one global clustering, taking the cells of all patients
together, and then for each patient indicate the subset of cells belonging to each
obtained cluster. However, as cell populations may be shifted from one patient
to another, global clustering is likely to perform poorly. Another approach is
to perform the clustering individually per patient and then try to match the
clusters. However, it is known that certain diseases are characterised by lacking
some cell populations, which results in a different number of clusters per pa-
tient. These issues have motivated us to explore the use of ILP techniques in
this context.

4 Complex aggregates over clusters

In this section, we assume a primary table containing the training examples,
that has a one-to-many relationship with a secondary table. For a given training
example, we want to aggregate over clusters of its related objects in the secondary
table. In the flow cytometry use case, the primary table contains the patients, and
the secondary table the measured cell properties. Each patient has ten thousands
of cells or more in the secondary table. The clusters represent the different cell
types present in the patient’s sample. When aggregating over clusters instead of



over a subset defined by conditions on attributes, there are a number of questions
to be addressed.

First, do we search for a similar cluster structure for each example, or do we
cluster the objects related to each example independently? The former approach
corresponds to propositionalization, and as explained in the previous section, can
be performed for instance by clustering over the complete secondary table. The
latter approach requires relational techniques and has the advantage that it is
more flexible: the number of clusters can be optimised per example, and it can
deal with clusters that are shifted among examples. In this paper we have chosen
the second option, and the rest of this discussion also assumes this option.

Second, which type of clustering do we want? One can distinguish total ver-
sus partial clustering, overlapping versus non-overlapping clustering, partitional
versus hierarchical clustering,. . . Partitional (flat) clustering algorithms return a
flat, unstructured, set of clusters. Hierarchical clustering algorithms, on the other
hand, return a cluster hierarchy, the top element corresponding to the complete
set of related secondary objects, and the bottom elements to singleton sets.

Third, how do we represent the clustering, and the corresponding complex
aggregates? Here, we present two approaches, distinguished by when the clus-
tering step is performed. In general, we would like to express aggregates like
“the average value of fluorescent marker M of the cells in a particular cluster is
larger than 3”, or, in other words, “there exists a cluster of cells with average
value for marker M larger than 3”. Thus, we obtain the following notation for
complex aggregates over clusters: ∃C,F (V,C,R), where C denotes a cluster, and
the other variables are as above.

The first approach that we discuss is the case where the clustering step is
done in pre-processing. Thus, the clustering is done before and independently
of the prediction step. This allows to pre-compute aggregate functions on the
obtained clusters. This way, the original data objects of the secondary table
can be discarded, retaining only the (aggregated) discovered clusters. In the
case of partitional clustering, this highly reduces the cardinality of the relation,
resulting in a more efficient prediction step. In the case of hierarchical clustering,
this gain depends on the depth of the cluster hierarchy: if the cluster hierarchy is
constructed until singleton leaf nodes, the cardinality will be increased instead.
One solution is to apply a top-down clustering procedure [4] and use a stopping
criterion. A possible disadvantage of this approach is that if there are many
examples and many related objects, the clustering step (which is performed for
each example independently) may be very time-consuming, while in the final
model, only few of the clusterings may actually be used.

The second approach is particularly suited for hierarchical clustering. In this
case, a more flexible and efficient refinement strategy is possible, by iteratively
performing a clustering step, as illustrated by the following example. Suppose
we have a rule stating that a patient has a disease if the sum of the values for
marker M of his cells is larger than 50. According to the theory developed in [22],
this rule can be specialised in three ways: by decreasing the aggregate function
(e.g., replace sum by average or maximum), by increasing the threshold value



(e.g., change 50 to 100), or by reducing the set to aggregate on. The latter can
be achieved by performing a splitting step on the cells for the patients for which
the original rule holds, resulting in a rule that states that there exists a cluster
of cells for which the sum of the marker M values is higher than 50. Similarly,
a rule stating that there is a cluster of cells with maximum value for marker
M smaller than 5 can be specialised a.o. by enlarging the set to aggregate on,
i.e., by enlarging the cluster. This can be accomplished by performing a merging
step on the clusters for which the original rule holds. This approach leads to a
more efficient clustering process than the precomputed (hierarchical) clustering
approach above, in the sense that a clustering step (splitting or merging) is only
performed “on demand”, on the relevant examples, and on the relevant clusters
of these examples. On the other hand it requires more memory space than the
previous approach, as the original data objects need to be retained.

In this paper we take a first step towards complex aggregates over clusters by
exploring the first approach, i.e., using a clustering computed in a pre-processing
step.

5 Experiments

In this section, we first describe experiments on two synthetic datasets to show
the strengths of aggregating over clusters. Afterwards, we show promising results
on a real-world flow cytometry dataset. In all experiments we use a flat clustering
approach. We use the relational decision tree learner Tilde[3] to learn the pre-
dictive model. We use default parameters for Tilde, except for pruning, which
is turned off, and the language bias, which is discussed in detail for each dataset.
Thresholds are obtained by discretisation (into ten bins).

5.1 Synthetic dataset 1

We start the experiments with a simple dataset of 20 samples, each containing
5000 cells and belonging to one of two classes. For illustration purposes, these
samples only contain one cluster each. One such dataset is presented in Figure
1; we generated 6 replicates in total, and report average results.

In many cases, prior background knowledge about the structure of the data
is available. In this example, we assume that we know that the clusters can be
approximated by ellipses. As such, we fit an ellipse to the data, and use the
mean value, the length of the major and minor axis and the angle of the major
axis as features to describe the cluster. Note that using the mean value of each
dimension, or using the number of cells in the cluster would not discriminate
between the two classes.

We have compared four different aggregation levels: checking the existence of
individual cells with one of the dimensions smaller or larger than some thresh-
old (no aggregates); comparing the maximum, minimum, or average of each
dimension to a threshold (simple aggregates); comparing the count, maximum,
minimum, or average of cells with a condition on their dimensions to a threshold
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Fig. 1. Synthetic dataset 1.

(complex aggregates); and checking the existence of a cluster with a condition
on the number (or percentage) of cells or on the mean, axis lengths or axis angle
of the fitted ellipse (cluster aggregates).

We compare the different approaches by using them as language bias in the
relational decision tree learner Tilde. We use five-fold cross-validation, predict-
ing four patients in each fold. Figure 2 compares accuracy values of the different
settings.

We see that the cluster aggregates clearly outperform the other settings.
Moreover, the simple and complex aggregates perform worse than selection of
individual cells. Inspection of the size of the trees (data not included) shows that
the latter yields the largest trees, checking for the existence of cells in different
parts of the space. The average number of internal nodes for the different settings
in the figure is 3.5, 3.4, 2.6, and 1, respectively. The cluster aggregates are able
to classify the data (almost) perfectly with a single test that checks the length
of the major or minor axis.

5.2 Synthetic dataset 2

This dataset reflects the properties of flow cytometry data more closely. It again
consists of twenty samples, which might e.g. represent patients, that must be
classified into two classes, e.g. healthy or diseased.

For each sample, a number of datapoints in a four dimensional space is gen-
erated. The datapoints are divided into five clusters, which each have normal



Fig. 2. Accuracy of relational decision tree with different language biases on synthetic
dataset 1.

Table 1. Properties of synthetic dataset 2.

Dim 1 Dim 2 Dim 3 Dim 4 Count Count

Mean Std Mean Std Mean Std Mean Std class 1 class 2

Cluster 1 2 1.0 2 1.0 4 0.5 2 1.0 5000 5000
Cluster 2 1 0.5 1 0.5 1 0.5 2 1.0 1000 or 2000 1000 or 2000
Cluster 3 1 0.5 3 0.5 1 0.5 2 1.0 1000 1000
Cluster 4 3 0.5 1 0.5 1 0.5 2 1.0 2000 or 1000 2000 or 1000
Cluster 5 3 0.5 3 0.5 1 0.5 2 1.0 200 500

distributions. For each patient, the properties of these clusters are slightly dif-
ferent, by perturbing the values in Table 5.2 using a normal distribution with a
small standard deviation around the given values.

As can be seen in the table, cluster five is the important cluster in the di-
agnosis. Depending on the abundance of datapoints in this cluster, the patients
can be split in the two classes. This cluster can be defined as having high values
in dimension 1 and 2, low values in dimension 3 and neutral values in dimension
4. Cluster one and four are always present, while clusters two and three can be
present in different abundances, without influencing the diagnosis. An illustra-
tion of this dataset can be seen in Figure 3, in total 6 replicates were used, and
average results are reported.

To test our algorithmic approach, we again built four different versions of the
language bias as input to Tilde. The settings no aggregates, simple aggregates,
and complex aggregates are the same as with the previous dataset, except that
there are four dimensions now. For the cluster aggregates, we assume we have



Fig. 3. One sample from synthetic dataset 2. The four-dimensional sample is visualised
in all possible two-dimensional plots. The colours indicate the different clusters.

a good clustering algorithm suited for the data. Because we do not want our
results to be influenced by the choice of the clustering algorithm, we use the
correct clusters, known from generating the data. We describe each cluster by
its number of cells and its average value of each dimension.

Accuracy values for five-fold cross-validation can be found in Figure 4. We
see that the simple aggregates and the cluster aggregates perform best. The
latter has a large standard deviation, because on one of the replicates, it only
obtains an accuracy of 0.3. The complex aggregates yield the smallest trees, but
this seems to harm their predictive accuracy.

5.3 HVTN

The HVTN (HIV Vaccine Trials Network) dataset was one of the datasets anal-
ysed in the FlowCAP II Challenge [1]. This challenge can be seen as a benchmark
tool for sample classification based on flow cytometry data. The study contained
48 individuals, each of them having received an experimental HIV vaccine. Sam-
ples were collected approximately 10 months later and T-cells were challenged
with two antigens. The response of T-cells was measured by flow cytometry for
each of these groups, resulting in two sample files per individuals. The goal of
the challenge is to discriminate between the two antigen stimulation groups.



Fig. 4. Accuracy of relational decision tree with different language biases on synthetic
dataset 2.

Aghaeepour et al. [1] report modest results of previous manual analysis, while
several classification algorithms that participated in the challenge obtained an
(almost) perfect classification, with accuracy ranging from 0.81 to 1.00.

The sample files from 27 individuals were included in the training set, while
the files from the other 21 individuals were used as test set. The number of cells
that is measured in each file ranges from 40,029 to 354,084.

Experimental set-up. We have kept the same train/test separation as in
the challenge. On each of the sample files we performed the FlowMeans [2]
algorithm, which can be seen as an adaptation of k-Means to flow cytometry
data. Ten markers (attributes) were used to perform the clustering, the two
markers that were left out are known to be unrelated to cell populations. The
number of clusters was optimised per sample file, which resulted in 3 to 9 clusters.

For each resulting cluster, the features that we included in Tilde are the
absolute and relative cell count, and the mean and standard deviation of each
of the ten markers. Each feature was compared to 10 threshold values, obtained
by discretisation. Furthermore, we added a complex aggregate that counts the
number of clusters with one of these features. Finally, for each of the ten markers,
we also added some statistics over the complete sample (i.e., without clustering):
mean, standard deviation, skewness, kurtosis, median, and interquartile range.
With these features, a bagging ensemble of 100 Tilde trees was run.

An schematic overview of this set-up can be seen in Figure 5.

Results. Using the procedure described above, we obtained a test set accuracy
of 0.93. We are unaware whether the systems that participated in the challenge



Fig. 5. Schematic overview of the experimental set-up.

took into account the fact that for each individual there is one file for each
antigen stimulation. Since it is known which files belong to which individual, we
also evaluated our results using this extra information. For each individual, we
checked which prediction was made with the most certainty, and then predicted
the opposite class for the other prediction. This resulted in an improved test set
accuracy of 0.95. Still, six out of nine systems that participated in the challenge
have a better predictive performance, which motivates us to look into better
clustering procedures, or better ways to extract features from the predicted
clusters, in future work.

We also ran a random forest instead of bagging, using feature sampling at
each node of the tree. However, this led to severe overfitting of the training data,
which we are also still looking into.

6 Conclusions and further work

Flow cytometry data are relationally structured, involving a one-to-many re-
lation with very high cardinality. Handling this relation by selecting specific
elements is too fine grained, while aggregating over the set is too coarse grained.
This domain clearly needs complex aggregates, where the aggregates are defined
over different cell populations. As it is difficult to express such populations in
terms of attribute conditions, we here propose to aggregate over clusters. To
our knowledge, this has not been considered before. In this paper, we proposed



two approaches to aggregate over clusters: either perform a clustering in a pre-
processing step, which allows to discard the original data objects, or integrate
a (hierarchical) clustering within the prediction step, which allows an efficient
refinement strategy. We empirically demonstrated the potential of the first ap-
proach on flow cytometry data, while at the same time showing that there is
still room for improvement. This work is the first attempt at analysing flow cy-
tometry data with relational learning techniques, until now no clustering was
considered for each example independently; further work will include develop-
ing better clustering strategies and better ways to extract features from these
clusters.
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