1,477 research outputs found
A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing
Acid-sensitive K+ channels of the tandem P-domain K+-channel family (TASK-1 and TASK-3) have been implicated in peripheral and central respiratory chemosensitivity; however, because of the lack of decisive pharmacological agents, the final proof of the role of the TASK channel in the chemosensory control of breathing has been missing. In the mouse, TASK-1 and TASK-3 channels are dispensable for central respiratory chemosensitivity (Mulkey et al., 2007Go). Here, we have used knock-out animals to determine whether TASK-1 and TASK-3 channels play a role in the carotid body function and chemosensory control of breathing exerted by the carotid body chemoreceptors. Ventilatory responses to hypoxia (10% O2 in inspired air) and moderate normoxic hypercapnia (3–6% CO2 in inspired air) were significantly reduced in TASK-1 knock-out mice. In contrast, TASK-3-deficient mice showed responses to both stimuli that were similar to those developed by their wild-type counterparts. TASK-1 channel deficiency resulted in a marked reduction of the hypoxia (by 49%)- and CO2 (by 68%)-evoked increases in the carotid sinus nerve chemoafferent discharge recorded in the in vitro superfused carotid body/carotid sinus nerve preparations. Deficiency in both TASK-1 and TASK-3 channels increased baseline chemoafferent activity but did not cause a further reduction of the carotid body chemosensory responses. These observations provide direct evidence that TASK-1 channels contribute significantly to the increases in the carotid body chemoafferent discharge in response to a decrease in arterial PO2 or an increase in PCO2/[H+]. TASK-1 channels therefore play a key role in the control of ventilation by peripheral chemoreceptors
Parametric study of transport aircraft systems cost and weight
The results of a NASA study to develop production cost estimating relationships (CERs) and weight estimating relationships (WERs) for commercial and military transport aircraft at the system level are presented. The systems considered correspond to the standard weight groups defined in Military Standard 1374 and are listed. These systems make up a complete aircraft exclusive of engines. The CER for each system (or CERs in several cases) utilize weight as the key parameter. Weights may be determined from detailed weight statements, if available, or by using the WERs developed, which are based on technical and performance characteristics generally available during preliminary design. The CERs that were developed provide a very useful tool for making preliminary estimates of the production cost of an aircraft. Likewise, the WERs provide a very useful tool for making preliminary estimates of the weight of aircraft based on conceptual design information
Linearly independent pure-state decomposition and quantum state discrimination
We put the pure-state decomposition mathematical property of a mixed state to
a physical test. We begin by characterizing all the possible decompositions of
a rank-two mixed state by means of the complex overlap between two involved
states. The physical test proposes a scheme of quantum state recognition of one
of the two linearly independent states which arise from the decomposition. We
find that the two states associated with the balanced pure-state decomposition
have the smaller overlap modulus and therefore the smallest probability of
being discriminated conclusively, while in the nonconclusive scheme they have
the highest probability of having an error. In addition, we design an
experimental scheme which allows to discriminate conclusively and optimally two
nonorthogonal states prepared with different a priori probabilities. Thus, we
propose a physical implementation for this linearly independent pure-state
decomposition and state discrimination test by using twin photons generated in
the process of spontaneous parametric down conversion. The information-state is
encoded in one photon polarization state whereas the second single-photon is
used for heralded detection.Comment: 6 pages, 5 figures, Submitted to Phys. Rev.
Pressure and Motion of Dry Sand -- Translation of Hagen's Paper from 1852
In a remarkable paper from 1852, Gotthilf Heinrich Ludwig Hagen measured and
explained two fundamental aspects of granular matter: The first effect is the
saturation of pressure with depth in a static granular system confined by silo
walls -- generally known as the Janssen effect. The second part of his paper
describes the dynamics observed during the flow out of the container -- today
often called the Beverloo law -- and forms the foundation of the hourglass
theory. The following is a translation of the original German paper from 1852.Comment: 4 pages, accepted for publication in Granular Matter, original
article (German) can be found under http://www.phy.duke.edu/~msperl/Janssen
Lixiviação de nitrogênio em um Cambissolo cultivado com pessegueiro e submetido à aplicação de composto orgânico.
A aplicação de composto orgânico em solos cultivados com pessegueiro pode potencializar a transferência de N por lixiviação. O trabalho objetivou avaliar a lixiviação de N em um solo cultivado com pessegueiro e submetido à aplicação de composto orgânico. Em um pomar comercial de pessegueiro no município de Bento Gonçalves (RS) foram instalados lisímetros a 20 cm de profundidade. O solo recebeu a aplicação de 0 e 144 litros de composto orgânico por planta-1 ano-1 nas safras de 2010, 2011 e 2012. A solução do solo foi coletada no período de julho a outubro de 2012 e submetida à análise de nitrato, amônio e N mineral. As maiores concentrações de N lixiviado foram encontradas no tratamento com 144 litros de composto orgânico por planta-1. A adubação com composto orgânico apresentou baixas concentrações de N lixiviado, o que pode contribuir com a redução de contaminação ambiental.Resumo expandido
A hybrid radiation detector for simultaneous spatial and temporal dosimetry
In this feasibility study an organic plastic scintillator is calibrated against ionisation chamber measurements and then embedded in a polymer gel dosimeter to obtain a quasi-4D experimental measurement of a radiation field. This hybrid dosimeter was irradiated with a linear accelerator, with temporal measurements of the dose rate being acquired by the scintillator and spatial measurements acquired with the gel dosimeter. The detectors employed in this work are radiologically equivalent; and we show that neither detector perturbs the intensity of the radiation field of the other. By employing these detectors in concert, spatial and temporal variations in the radiation intensity can now be detected and gel dosimeters can be calibrated for absolute dose from a single irradiation
Whole blood microRNAs as potential biomarkers in post-operative early breast cancer patients
Background: microRNAs (miRNAs) are considered promising cancer biomarkers, showing high reliability, sensitivity and stability. Our study aimed to identify associations between whole blood miRNA profiles, presence of circulating tumor cells (CTCs) and clinical outcome in post-operative early breast cancer patients (EBC) to assess the utility of miRNAs as prognostic markers in this setting.
Method: A total of 48 post-operative patients, recruited in frame of the SUCCESS A trial, were included in this retrospective study and tested with a panel of 8 miRNAs (miR-10b, −19a, − 21, − 22, −20a, − 127, − 155, −200b). Additional 17 female healthy donors with no previous history of cancer were included in the study as negative controls. Blood samples were collected at different time points (pre-adjuvant therapy, post-adjuvant therapy, 2 years follow up), total RNA was extracted and the relative concentration of each miRNA was measured by quantitative PCR and compared in patients stratified on blood collection time or CTC detection. Furthermore, we compared miRNA profiles of patients, for each time point separately, and healthy donors. CTCs were visualized and quantified with immunocytochemistry analysis. Data were analyzed using non-parametric statistical tests.
Results: In our experimental system, miR-19a, miR-22 and miR-127 showed the most promising results, differentiating patients at different time points and from healthy controls, while miR-20a, miR-21 and miR-200b did not show any difference among the different groups. miR-10b and miR-155 were never detectable in our experimental system. With respect to patients’ clinical characteristics, we found a significant correlation between miR-200b and lymph node status and between miR-20a and tumor type. Furthermore, miR-127 correlated with the presence of CTCs. Finally, we found a borderline significance between Progression Free Survival and miR-19a levels.
Conclusions_ This pilot study suggests that profiling whole blood miRNAs could help to better stratify post-operative EBC patients without any sign of metastasis to prevent later relapse or metastatic events
- …
