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A Role for TASK-1 (KCNK3) Channels in the Chemosensory
Control of Breathing

Stefan Trapp,'2 M. Isabel Aller,’ William Wisden,* and Alexander V. Gourine’

'Department of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital, Imperial College London, London SW10 9NH, United
Kingdom, 2Biophysics Section, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom, *Instituto de Neurociencias de Alicante,
Consejo Superior de Investigaciones Cientificas-Universidad Miguel Herndndez de Elche, Campus de San Juan, Apartado 18, Sant Joan d’Alacant, Spain,
4Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom, and *Department of Physiology, University
College London, London WCIE 6BT, United Kingdom

Acid-sensitive K * channels of the tandem P-domain K *-channel family (TASK-1 and TASK-3) have been implicated in peripheral and
central respiratory chemosensitivity; however, because of the lack of decisive pharmacological agents, the final proof of the role of the
TASK channel in the chemosensory control of breathing has been missing. In the mouse, TASK-1 and TASK-3 channels are dispensable
for central respiratory chemosensitivity (Mulkey et al., 2007). Here, we have used knock-out animals to determine whether TASK-1 and
TASK-3 channels play a role in the carotid body function and chemosensory control of breathing exerted by the carotid body chemore-
ceptors. Ventilatory responses to hypoxia (10% O, in inspired air) and moderate normoxic hypercapnia (3—- 6% CO, in inspired air) were
significantly reduced in TASK-1 knock-out mice. In contrast, TASK-3-deficient mice showed responses to both stimuli that were similar
to those developed by their wild-type counterparts. TASK-1 channel deficiency resulted in a marked reduction of the hypoxia (by 49%)-
and CO, (by 68%)-evoked increases in the carotid sinus nerve chemoafferent discharge recorded in the in vitro superfused carotid
body/carotid sinus nerve preparations. Deficiency in both TASK-1 and TASK-3 channels increased baseline chemoafferent activity but
did not cause a further reduction of the carotid body chemosensory responses. These observations provide direct evidence that TASK-1
channels contribute significantly to the increases in the carotid body chemoafferent discharge in response to a decrease in arterial P, or

an increase in Pg /[H "]. TASK-1 channels therefore play a key role in the control of ventilation by peripheral chemoreceptors.

Key words: carotid body; chemosensitivity; hypercapnia; hypoxia; respiration; TASK

Introduction

The basic rhythm of breathing is generated within the pre-
Botzinger complex of the medulla oblongata and then is subse-
quently shaped, modified, and transmitted to the bulbospinal
premotor neurons, which relay the resulting respiratory pattern
to the spinal motor neurons controlling respiratory muscles
(Feldman et al., 2003; Feldman and Del Negro, 2006). The brain-
stem respiratory network continuously receives chemoafferent
information about the arterial levels of P, , Pco , and pH and
adjusts respiratory motor output, ensuring appropriate ventila-
tion of the lungs in various environmental and physiological
conditions.

In mammals, respiratory chemoafferent inputs originate pri-
marily from the receptors in the carotid bodies and from the
central chemoreceptors in the brainstem (Nattie, 1999; Feldman
et al., 2003; Lahiri et al., 2006; Kumar, 2007). Type I (glomus)
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cells of the carotid body are the principal peripheral chemosen-
sitive elements which rapidly detect alterations in arterial levels of
P5, Pco,, and pH, and transmit this information to the chemoaf-
ferent fibers of the carotid sinus nerve which, in turn, relays to the
brainstem respiratory centers to evoke adaptive changes in ven-
tilation. P, and pH are also monitored by the chemoreceptors
localized within the brainstem, primarily at, or in close proximity
to, the ventral surface of the medulla oblongata (Loeschcke, 1982;
Mulkey et al., 2004), and possibly in several other distinct brain-
stem regions (Nattie, 1999; Putnam et al., 2004).

Acid-sensitive K™ channels of the tandem P-domain K-
channel family (TASKs) have been proposed to contribute signif-
icantly to various aspects of the chemosensory control of breath-
ing. TASK currents are inhibited by external acidic pH, activated
by alkali (Duprat et al., 1997; Kim et al., 2000; Rajan et al., 2000),
and reduced by low O, (Lewis et al., 2001). TASK-1 (KCNK3)
homodimers go from open to shut within 0.5 pH unit around pH
7.4 (Duprat et al., 1997), whereas TASK-3 (KCNK9) channels
shut under more acid conditions (Rajan et al., 2000). TASK-1 and
TASK-3 can form homodimeric or heterodimeric channels (Cz-
irjak and Enyedi, 2002; Berg et al., 2004).

Type I cells of the carotid body express a prominent back-
ground K" conductance that displays some TASK-like proper-
ties [including weak outward rectification, inhibition by low pH,
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and activation by halothane (Buckler et al., 2000)] and is inhib-
ited by hypoxia (Buckler, 2007). In addition, the TASK genes are
expressed in all central CO,-chemosensitive regions (Talley et al.,
2001), including areas of the ventrolateral medulla (Washburn et
al., 2003), raphe nuclei (Washburn et al., 2002), and locus cer-
uleus (Bayliss et al.,, 2001). However, in mice, TASK-1 and
TASK-3 channels appear to be dispensable for central respiratory
chemosensitivity (Mulkey et al., 2007).

Primarily because of the lack of specific inhibitors for these
channels, it is still unknown whether and how TASK-1 and
TASK-3 channels contribute to the carotid body function and the
control of ventilation exerted by these peripheral chemorecep-
tors. Here, using knock-out mice, we directly confirm that
TASK-1 channel does not indeed contribute to the central respi-
ratory chemosensitivity but appears to be essential for the carotid
body CO,/pH sensitivity and also contributes significantly to the
mechanism of oxygen sensing in the carotid body.

Materials and Methods

Animals. The TASK-1""" and TASK-3 ~/~ mice used in this study have
been described in detail previously (Aller et al.,, 2005; Brickley et al.,
2007). In both lines, the first coding exon of the respective gene is de-
stroyed and the mutant allele is not transcribed. TASK-1 ~/~ and TASK-
37/~ mice were mainly of the C57BL/6 background. We used adult (3—4
months) TASK-1 "/~ and TASK-3 '~ mice and their respective wild-
type counterparts. Double knock-out mice (TASK-1~'":TASK-3 /")
were produced by interbreeding the individual knock-out strains. Geno-
types were confirmed by PCR using genomic DNA from ear biopsies as
template. Double knock-out mice appeared overtly healthy, and could be
bred with each other. All experiments were performed in accordance
with the UK Animals (Scientific Procedures) Act, 1986.

Whole-body plethysmography. Respiratory rate ( fg, breaths min ~*)
and tidal volume (Vy, ul g~') in conscious, freely moving mice were
measured by whole-body plethysmography as described in detail previ-
ously (Onodera et al., 1997; Rong et al., 2003). All experiments were
performed at room temperature (22-24°C). In brief, the mouse was
placed in a Plexiglas recording chamber (~400 ml) that was flushed
continuously with a mixture of 79% nitrogen and 21% oxygen (unless
otherwise required by the protocol) at a rate of ~1 L min ~'. Concentra-
tions of O, and CO, in the chamber were monitored on-line using a
fast-response O,/CO, monitor (Morgan Medical). The animals were
allowed at least 30 min to acclimatize to the chamber environment at
normoxia/normocapnia (21% O,, 79% N,, and <0.3% CO,) before
measurements of baseline ventilation were taken. Hypoxia was induced
by lowering the O, concentration in the inspired air down to a level of
10% for 5 min. In separate experiments, normoxic hypercapnia was in-
duced by titrating CO, into the respiratory mixture up to alevel of 3, 6, or
10% (lowering N, accordingly) for 5 min at each CO, level. The pressure
signal was amplified, filtered, recorded, and analyzed off-line using Spike
2 software (Cambridge Electronic Design). The measurements of f, and
V. were taken during the last 2 min before exposure to the stimulus and
during the 2 min period at the end of each stimulus, when breathing
stabilized. Hypoxia- or hypercapnia-induced changes in the f, V., and
minute ventilation (Vy) ( fx X Vi3 ml min ' kg ') were averaged and
expressed as means * SE.

In situ brainstem—spinal cord preparation. A separate experiment was
conducted using i situ brainstem—spinal cord preparations described in
detail previously (Paton, 1996). In brief, TASK */* and TASK-1 "/~ mice
were given heparin (500 U, i.p.), anesthetized deeply with halothane until
loss of paw withdrawal reflex, bisected under the diaphragm, immersed
in cold carbogenated Ringer solution, and decerebrated precollicularly.
Preparations were then transferred to a recording chamber, and a
double-lumen cannula was placed into the descending aorta for retro-
grade perfusion with carbogenated (saturated with 95% O,/5% CO,)
solution containing the following (in mm): 124 NaCl, 26 NaHCOs, 3 KCl,
2 CaCl,, 1.25 MgSO,, 1.25 KH,PO,, and 10 dextrose (PCOZ 40 mmHg,
pH 7.4, 32°C). Ficoll 70 (1.25%) was added as an oncotic agent, and
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vecuronium bromide (4 pg ml~"') was added to block neuromuscular
transmission. Aortic perfusion pressure was monitored via the second
lumen of the cannula. Both vagi and carotid sinus nerves were cut to
eliminate inputs from the peripheral chemoreceptors. Activity of the
phrenic nerve was recorded using a suction electrode. Nerve activity was
amplified, filtered (0.1-3 kHz), rectified, and integrated (50 ms time
constant), relayed to a computer, and recorded usinga 1401 interface and
Spike 2 software (Cambridge Electronic Design).

In a preliminary study using rats, we found relatively weak respiratory
responses of the preparations with denervated peripheral chemorecep-
tors when extra CO, was applied (saturating the perfusate with 90%
0,/10% CO,). Therefore, in this study, to assess the central respiratory
chemosensitivity, the amount of CO, bubbled through the solution was
lowered to 3% (resulting in a solution with P of 26 mmHg and pH of
7.52) and then increased to 8% (P, 60 mmHg, pH 7.24), leading to
significant and reproducible increases in the amplitude of the phrenic
nerve discharge (see Fig. 1C). This protocol was used in the current study.

In vitro sinus nerve recording. To assess carotid body function, super-
fused preparations of the carotid body/carotid sinus nerve were used
(Rong et al., 2003). Mice were terminally anesthetized with halothane
(6% in air mixture) and were decapitated at the lower cervical level. The
head was placed in a chamber with circulating ice-cold Krebs solution
saturated with 95% O,/5% CO,. The region of the carotid bifurcation
containing the carotid body and the attached sinus nerve was dissected
under a microscope and was placed into a recording chamber (1 ml). The
preparation was superfused with carbogenated (saturated with 95%
0,/5% CO,) solution containing the following (in mm): 124 NaCl, 3 KCl,
2 CaCl,, 26 NaHCO3, 1.25 NaH, PO, 1 Mg(50,),, 10 p-glucose (Po, 40
mmHg, pH 7.4). Perfusion rate was 6 ml min ~', and the temperature in
the chamber was kept constant at 37°C. The sinus nerve was desheathed,
and recordings were made using a suction electrode. The chemoafferent
activity was amplified, filtered (0.2-3 kHz), relayed to a computer, and
recorded using a 1401 interface and Spike 2 software (Cambridge Elec-
tronic Design).

Hypoxia was induced for 3 min by perfusing the chamber with the
above solution in which O, had been replaced by bubbling it with 95%
N,/5% CO,. Changes in the P, of the perfusate were monitored on-line
using an oxygen meter (model ISO,; World Precision Instruments). The
analog of hypercapnia (respiratory acidosis) was induced for 5 min by
perfusing the chamber with solution in which extra CO, had been added
to increase P, from its normal value of 40 mmHg to 65 mmHg, which
is accompanied by a reduction in pH from 7.4 to 7.2 (Pgo ; pH values
were measured using a Siemens Blood Gas Analyzer).

Data analysis. Recordings were processed using a 1401 interface and
analyzed using Spike 2 software (Cambridge Electronic Design). Dis-
charge frequency of the whole carotid sinus nerve was determined after
discrimination of activity with a window discriminator (Digitimer D130
Spike Processor). The level of background noise was determined before
each experiment by placing a recording electrode outside the prepara-
tion. Analysis of single chemoafferent fiber discharge was performed
using the spike-sorting function of the Spike 2 program (Cambridge
Electronic Design) as described in detail previously (Rong et al., 2003).
Changes in the whole-nerve and single chemoafferent fiber activities are
presented as peaks (the highest level of activity during the period of
stimulation, in spikes s ') and integral (frequency vs time, [AFF) in-
creases in discharge. Integral increases in activity during the same time
periods were determined by measuring area under the curve relative to a
straight line joining the level of discharge before and after the stimulus.

All of the data are reported as means = SE. Comparisons between
experimental groups were made using Student’s t test or ANOVA fol-
lowed by Tukey-Kramer’s post hoc test, as appropriate. A value of p <
0.05 was considered to be significant.

Results

Impaired ventilatory response to hypoxia in TASK-1 "'~ mice
The resting ventilation in normoxia/normocapnia was similar in
TASK-1""" mice (1.58 = 0.09 ml min "' ¢!, n = 8) and their
wild-type counterparts (1.79 = 0.09 mlmin 'g ', n=7;p =
0.12). When challenged with hypoxia (10% O, in the inspired
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air), wild-type mice showed an increased
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mals (Figs. 1B, 2B). TASK-1 mice dis-  Figure 1.  TASK-1 channel is essential for the development of normal ventilatory responses to hypoxia and €0, in mice. 4,

played significantly smaller ventilatory
responses to moderate levels of inspired
CO, (Fig. 1B). In an atmosphere of 3%
and 6% CO,, Vi in TASK-1 "'~ mice in-
creased to 2.56 = 0.20 ml min "' g "' and
466 * 027 ml min~' g7' (n 7),
whereas in the wild-type animals in the
same conditions, Vi was elevated to 3.94 =
0.32mlmin"'g~' (p<0.05)and 5.97 =
034 mlmin~'g~' (p <0.05) (n =7),
respectively (Fig. 1B). Separate groups of TASK-1"/" (n = 3)
and wild-type (n = 4) mice were also challenged with a high level
of hypercapnia (10% CO, in the inspired air). In these condi-
tions, the difference in minute ventilation between TASK-1 """
and TASK ™" mice was no longer observed (6.9 = 0.91 ml
min~'g 'vs6.17 = 0.83 mlmin ' g ', respectively; p = 0.57),
although the increase in the rate of breathing was significantly
smaller in TASK-1 /" animals (345 *= 8 vs 394 =+ 5 breaths
min ', p < 0.05). Respiratory responses to increases in Peo/
[H™] of the in situ brainstem—spinal cord preparations of TASK-
17'~ and TASK ™" mice with denervated peripheral chemore-
ceptors were similar (Fig. 1C). No significant differences in any
measures of ventilation were detected between TASK-3 '~ and
the wild-type control mice when concentration of CO, in the
inspired air increased to 3% or 6% (Fig. 2 B).

Impaired carotid body function in TASK-1 ~'~ mice

The results of the whole-body plethysmography experiments
presented above strongly suggested that carotid body function is
compromised in TASK-1-deficient mice. To test this hypothesis,
we recorded activity of the carotid sinus nerve in the in vitro
superfused carotid body/carotid sinus nerve preparations taken
from wild-type and TASK-17'" mice. Hypoxia- and CO,-
evoked increases in the carotid sinus nerve chemoafferent dis-
charge were recorded, and the effect of TASK-1 deficiency on

Ventilatory responses to hypoxia (10% 0, in the inspired air) in conscious TASK-1-deficient mice (TASK-1 ~/ ) and their wild-type
counterparts (TASK /). B, Ventilatory responses to varying levels of normoxic hypercapnia in TASK-1 ~/~ and TASK /™ mice.
€, Phrenicnerve responses to an increase in P, /[H *in in situ brainstem—spinal cord preparations with denervated peripheral
chemoreceptors from TASK-1 /™ and TASK */* mice. Top, Raw data showing time-condensed records of integrated phrenic
nerveactivity (IPNA) in basal conditions (P o, 26 mmHg, pH7.52) and during respiratory acidosis (o, 60 mmHg, pH7.24). Middle,
Results are presented as waveform averages of the integrated phrenic nerve activity for 60 respiratory cycles at basal conditions
and during respiratory acidosis. Bottom, Summary data of changes in minute respiratory output (phrenicamplitude X respiratory
rate) in response to increases in P, /[H *1. Data are presented as means = SE. Numbers in parentheses indicate sample sizes.
*p < 0.05, significantly different from TASK /™ response.

these responses was determined. In preparations taken from
TASK ™" animals, hypoxic stimulation evoked a dramatic in-
crease in the carotid sinus nerve discharge: the whole-nerve che-
moafferent activity increased from 50 *+ 9 spikes s ~' to a peak of
414 *+ 37 spikes s 7' (n = 8) (Fig. 3A4,C). In preparations taken
from TASK-1 "'~ mice, hypoxia-induced increases in the carotid
sinus nerve peaked at 221 = 31 spikes s ' (n = 10) (Fig. 34,C),
representing some 49% reduction in the whole-nerve response to
a decrease in P, (p < 0.05). Accordingly, the average hypoxia-
induced peak firing rate of single chemoafferent fibers was signif-
icantly reduced in the carotid body/sinus nerve preparations
from TASK-1 "/~ mice (5.4 = 0.8,n=27vs 14.6 = 1.5,n =31 in
TASK*'* mice; p < 0.05) (Fig. 4B).

Genetic ablation of TASK-1 not only reduced the peak of the
response to hypoxia, but also made it more transient. Conse-
quently, the area under the curve of the frequency versus time
plot was calculated to compare the responses (Figs. 3E, 4 B).

In preparations taken from wild-type mice, carotid sinus
nerve chemoafferent discharge also significantly increased (peak,
102 = 15 spikes s ', n = 8) in response to respiratory acidosis
(increase in Peo,/ [H™]), albeit to a lesser degree compared with
that during hypoxia (Fig. 3B, D). Hypercapnia-evoked increase
in the carotid sinus nerve discharge was considerably reduced in
preparations taken from TASK-1 /" mice (peak, 49 * 10 spikes
s, n = 10; p < 0.05). This represents a 68% reduction of the
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Figure2.  TASK-3 channelis not required for the development of the ventilatory responses to

hypoxia and €0, in mice. A, Ventilatory responses to hypoxia (10% 0, in the inspired air) in
conscious TASK-3-deficient mice (TASK-3 ~/~) and their wild-type counterparts (TASK */*).
B, Ventilatory responses to varying levels of normoxic hypercapnia in TASK-3 '~ and
TASK */* mice. Data are presented as means = SE. Numbers in parentheses indicate sample
sizes.

response in the knock-out animals (Fig. 3B,D). Moreover, in
TASK-1"'" mice, the increase of discharge in response to CO,
failed to reach significance. Similarly, the average CO,-induced
peak increase in the activity of single-sinus nerve chemoafferent
fibers was significantly lower in preparations taken from the
TASK-1 "'~ mice (1.2 = 0.2 spikess ', n =27 vs 3.7 = 0.7 spikes
s~ ', n=31in TASK ™*; p < 0.05) (Fig. 4C).

Impaired carotid body function in TASK-1 ~/":TASK-3 ™/~
double knock-out mice

The results presented above demonstrated a blunted but not
abolished carotid body response to hypoxia in mice deficient in
TASK-1 channels. To test whether the remaining response to
hypoxic stimulation might be attributable to TASK-3 channels,
experiments were conducted using the carotid body/carotid si-
nus nerve preparations taken from TASK-1/TASK-3 double
knock-out mice. It was found that in these animals the average
basal firing rate of single chemoafferent fibers (4.1 = 0.7 spikes
s, n = 31) (Fig. 4B,C) and, accordingly, the activity of the
whole carotid sinus nerve (Fig. 3A—D) were significantly (p <
0.05) higher compared with both TASK *'* and TASK-1~'~
mice (basal firing of single units, 0.9 = 0.2 and 0.6 = 0.1 spikes
s ', respectively). However, the absolute increases in discharge
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frequency in response to hypoxia or CO, were significantly re-
duced compared with the responses in TASK */* mice and very
similar to those observed in preparations taken from TASK-1 '~
mice, both at the whole-nerve and single chemoafferent fiber
levels (Figs. 3C-F, 4B,C).

Discussion

Our observations provide the first direct evidence that TASK-1
channels contribute significantly to the increases in the carotid
body chemoafferent discharge in response to a decrease in arterial
Py oranincreasein Pcq /[H "] and, therefore, play an important
role in the control of ventilation by the peripheral chemorecep-
tors. Another member of the tandem P-domain K -channel
family, TASK-3, is not essential for mediating changes in breath-
ing in response to chemosensory stimulation.

TASK-1 channels and central CO, chemoreception

TASK channels are expressed in various central CO,-
chemosensitive regions including ventrolateral medulla (Wash-
burn etal., 2003), medullary dorsal and caudal raphe (Washburn
etal., 2002), and pontine locus ceruleus (Bayliss et al., 2001), and
considering their unique sensitivity to small changes in external
pH, they have been proposed to participate in central CO,/pH
chemoreception (Mulkey et al., 2004; Putnam et al., 2004). How-
ever, Mulkey et al. (2007) demonstrated recently that mouse
TASK-1 and TASK-3 channels are nonessential for central respi-
ratory chemosensitivity. Indeed, although increases in the carotid
chemoafferent discharge evoked by rising levels of Pq / [H"]
were reduced in our TASK-1 ' mice, these animals still devel-
oped vigorous ventilatory responses to CO,. This is not surpris-
ing considering that the brainstem chemosensitive sites account
for up to 80% of the overall CO,-evoked ventilatory response
when peripheral chemoafferent input is interrupted experimen-
tally (Heeringa et al., 1979).

Our data agree with the evidence of Mulkey et al. (2007), who
demonstrated, using independently generated mice, that
TASK-1, TASK-3, and TASK-1/TASK-3 double knock-out ani-
mals develop normal ventilatory responses to hyperoxic hyper-
capnia. Considering that peripheral chemoreceptors can still dis-
charge even at highlevels of P, , we conducted experiments using
in situ working brainstem—spinal cord preparations from TASK-
17’7 and TASK ™" mice in which peripheral chemoreceptors
were surgically denervated. No difference was observed in CO,-
induced respiratory responses between preparations taken from
TASK-1"'" and TASK */* mice, confirming the conclusions of
Mulkey et al. (2007) that TASK-1 channel is indeed dispensable
for central respiratory chemosensitivity.

In our study, mice were also challenged with normoxic hyper-
capnia, and the differences in the ventilatory responses between
TASK-1 "/~ and wild-type mice were only observed at moderate
levels of hypercapnia (3 or 6% CO, in inspired air), reflecting
impairment of the carotid body function. It was also found that
TASK-1"'" and wild-type mice mounted similar ventilatory re-
sponses to severe levels of hypercapnia (10% CO, in the inspired
air), confirming that intact central CO, chemoreceptors can fully
compensate for the loss of the peripheral chemoafferent input
under these conditions. These data also indicate that TASK chan-
nel deficiency does not impair the function of the medullary re-
spiratory rhythmogenic neurons as well as respiratory premotor
and motor neurons, all of which were found previously to express
TASK channels (Washburn et al., 2003) implicated in the control
of motoneuronal excitability (Bayliss et al., 2003).
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Impaired carotid body function in TASK-deficient mice. A, Representative raw data showing hypoxia-evoked increases in the carotid sinus nerve (CSN) chemoafferent discharge

baseline peak CO,

recorded in the in vitro superfused carotid body/carotid sinus nerve preparations taken from the TASK-1-deficient mice (TASK-1 ~/7), TASK-1- and TASK-3-deficient mice (TASK-1/3 ~/~), and their
wild-type counterparts (TASK */*). B, Raw data illustrating CO,-evoked increases in the carotid sinus nerve chemoafferent discharge recorded in the in vitro superfused carotid body/carotid sinus
nerve preparations taken from TASK-1~/~, TASK-1/3 ~/~, and TASK /™ mice. €, D, Summary data of the mean peak hypoxia (€)- and (0, (D)-induced increases in discharge frequency of the

carotid sinus nerve in preparations taken from TASK-1~/~, TASK-1/3 ', and TASK */*

mice. E, F, Summary data of the mean integral of hypoxia (E)- and CO, (F)-induced increases in discharge

frequency (/' AFF) of the carotid sinus nerve in preparations taken from TASK-1 ', TASK-1/3 ', and TASK */* mice. Data are presented as means = SE. Numbers in parentheses indicate
sample sizes. FF, Discharge frequency. *p << 0.05, significantly different from TASK */* under the same conditions.

TASK-1 channels and chemoreception in the carotid body
Hypoxia-induced inhibition of K* channels in type I cells, first
demonstrated almost two decades ago (Lopez-Barneo et al.,
1988), is believed to constitute the key event in the carotid body
chemosensory transduction mechanism (for recent reviews, see
Kemp, 2006; Buckler, 2007; Kumar, 2007). Inhibition of K™
channels leads to depolarization (Buckler, 1997), Ca?* entry
through voltage-gated Ca®" channels (Buckler and Vaughan-
Jones, 1994a,b), and subsequent activation of the carotid sinus
nerve chemoafferent fibers via release of ATP and acetylcholine
(Zhang et al., 2000; Rong et al., 2003). The exact mechanisms
leading to inhibition of K™ channels are unresolved (Kemp,
2006; Kumar, 2007), but rat type I cells express background K *
channels that display some TASK-like properties, showing great-
est similarity to TASK-1 and TASK-3 (for review, see Buckler,
2007).

The proof of the functional role played by these TASK chan-
nels in the carotid body chemoreception has been missing. Both
TASK-1 and TASK-3 immunoreactivities have been demon-
strated in the rat carotid body (Yamamoto et al, 2002;
Yamamoto and Taniguchi, 2006); however, some of these anti-
bodies still bind to knock-out brain tissue (Aller et al., 2005;
Brickley et al., 2007). Here, using knock-out mice, we demon-
strated that TASK-1 channel deficiency abolished the carotid si-
nus nerve responses to hypercapnia. However, loss of a “back-
ground” potassium conductance would be expected to cause an
increase in baseline activity, which we did not observe. Similar to
this, Aller et al. (2005) reported that the resting membrane po-
tential of cerebellar granule cells was not reduced in TASK-1 "'~
mice. They demonstrated that this was the result of a replacement
of TASK-1 channels, or TASK-1/TASK-3 heterodimeric chan-
nels, by TASK-3 channels. This could also explain our present
observations. TASK-3 channels would replace the TASK-1 ho-

modimers or TASK-1/TASK-3 heterodimers in the carotid body
type I cells, thus preventing depolarizing shift of the membrane
potential. Furthermore, the acid-shifted pH sensitivity of
TASK-3 homodimeric channels (for review, see Duprat et al.,
2007) would explain why no response was observed during hy-
percapnia, which was accompanied by a moderate decrease in pH
from 7.4 to 7.2.

These conclusions were further supported by the results ob-
tained using TASK-1/TASK-3 double knock-out mice. These an-
imals displayed the same reduced carotid chemoafferent re-
sponse to hypoxia and hypercapnia as the TASK-1 '~ mice,
evident from both a smaller increase in frequency for the peak
response and a smaller area under the curve for the frequency
versus time plot (Figs. 3, 4). However, these blunted responses
were developing from an increased level of baseline activity com-
pared with both wild-type and TASK-1"'" preparations. This
would be expected because in these animals, both TASK-1 and
TASK-3 channels are lost and the depolarizing shift of the mem-
brane potential cannot be prevented, which is reflected in the
increased baseline firing rate of the carotid sinus nerve. The pH
sensitivity is similarly lost, specifically because TASK-1 is not
present.

Similarly to these results, Mulkey et al. (2007) noted a signif-
icant hyperventilation during hypoxia (10% O,) in TASK-1/
TASK-3 double knock-out mice. In their case, ventilation during
hypoxia in TASK-1/":TASK-3 /~ mice was not significantly
different from that in the controls, most likely reflecting this
increased level of the peripheral chemoafferent activity in the
double knock-out mice.

In summary, TASK-1 channels (but not TASK-3 channels)
indeed play an important role in the mechanisms leading to an
increase in the carotid sinus nerve chemoafferent discharge dur-
ing hypoxia and hypercapnia. The response to an increase in
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Figure 4.  Single-unit analysis of the carotid sinus nerve responses to chemosensory stimu-

lation in TASK-deficient mice. A, Representative raw data of the discharge frequency profiles of
eight carotid sinus nerve single chemoafferent fibers recorded under basal conditions and dur-
ing hypoxic stimulation in the in vitro superfused carotid body/carotid sinus nerve preparations
taken from the TASK-1-deficient mice (TASK-1~/""; right) and their wild-type counterparts
(TASK */*; left). B, Summary data of the mean peak hypoxia-induced increases in discharge
frequency (left) and mean integral of the hypoxia-induced increase in discharge frequency
(J AFF; right) of the carotid sinus nerve chemoafferent fibers in preparations taken from TASK-
177, TASK-1/3 ~/~, and TASK */* mice. €, Summary data of the mean peak C0,-induced
increases in discharge frequency and mean integral of C0,-induced increase in discharge fre-
quency (JAFF) of the carotid sinus nerve chemoafferent fibers in preparations taken from
TASK-1/, TASK-1/3 ~/~,and TASK */* mice. Dataare presented asmeans = SE. Numbers
inparenthesesindicate sample sizes. FF, Discharge frequency. *p << 0.05, significantly different
from TASK /™ under the same conditions.

Peo/[H™] was abolished in both TASK-1~'" and TASK-1/
TASK-3 double knock-out carotid body preparations. Also, the
hypoxia-induced responses were significantly attenuated, al-
though not abolished, by TASK-1 deficiency. This suggests the
existence of either a parallel mechanism of hypoxic chemotrans-
duction, which works in synergy with the one involving TASK-1
channels, or a mechanism that can partially compensate for the
loss of the latter in the knock-out animals, or both. Likewise,
whereas TASK-3 channels were not essential for the expression of
the hypoxic ventilatory response, we cannot exclude that they still
play a role in normal conditions, but TASK-1 (or other K ¥ chan-
nels) can fully compensate for their loss in the knock-out mice.
Because hypoxia does not stimulate respiration centrally, it is
unsurprising that the reduced responsiveness of the carotid bod-
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ies to hypoxia in TASK-1 """ mice resulted in a roughly similar
reduction of the overall ventilatory response. In contrast, the
attenuation of the CO,-evoked ventilatory response was smaller
than the attenuation of the CO,-evoked increases in the carotid
sinus nerve chemoafferent discharge in the TASK-1 "/~ animals.
These data indicate that in the carotid body, TASK-1 channels
play an even more significant role in sensing alterations in P, /
[H™]. Indeed, in our experimental conditions, an increase in
Peo /[H *] failed to evoke significant increases in the carotid
sinus nerve discharge in preparations taken from either TASK-1
or TASK-1/TASK-3 double knock-out mice. TASK-1 channels
are uniquely sensitive to changes in external pH within the phys-
iological range 7.3—7.4 (Duprat et al., 1997). Because changes in
external pH that follow changes in Pco represent the adequate
and main stimuli for the carotid body chemoreceptors (Gray,
1968), TASK-1 channels are ideally suited to act as the primary
Peo/[H *] chemosensors of type I cells. Other acid-sensing ion
channels (Tan et al., 2007) may work in synergy with TASK-1;
however, their relative contribution to Pcq /[H *] sensitivity in
the carotid body appears to be insignificant.

Perspectives

The data obtained in the present study indicate that in the carotid
body, TASK-1 channels account for at least half of the increases in
the chemoafferent discharge in response to hypoxia, mediate
CO,/pH sensitivity, and, therefore, play a key role in the control
of ventilation exerted by the peripheral respiratory chemorecep-
tors. This function alone would be expected to maintain a high
selection pressure for the TASK-1 gene. Although decreases in
extracellular pH, which follow increases in P¢q , could directly
inhibit TASK-1 channels expressed by chemosensitive type I cells
of the carotid body, the actual oxygen sensor as well as biochem-
ical pathways leading from the oxygen sensor to inhibition of
these channels during hypoxia have not been definitely identi-
fied. The parallel (or compensatory) mechanism(s) of oxygen
sensitivity not involving TASK channels and responsible for the
residual chemoafferent responses observed in the TASK-1
knock-out mice also remain to be determined.
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