312 research outputs found

    Age-Based Differences in Strategy Use in Choice Tasks

    Get PDF
    We incorporated behavioral and computational modeling techniques to examine age-based differences in strategy use in two four-choice decision-making tasks. Healthy older (aged 60–82 years) and younger adults (aged 18–23 years) performed one of two decision-making tasks that differed in the degree to which rewards for each option depended on the choices made on previous trials. In the choice-independent task rewards for each choice were not affected by the sequence of previous choices that had been made. In contrast, in the choice-dependent task rewards for each option were based on how often each option had been chosen in the past. We compared the fits of a model that assumes the use of a win-stay–lose-shift (WSLS) heuristic to make decisions, to the fits of a reinforcement-learning (RL) model that compared expected reward values for each option to make decisions. Younger adults were best fit by the RL model, while older adults showed significantly more evidence of being best fit by the WSLS heuristic model. This led older adults to perform worse than younger adults in the choice-independent task, but better in the choice-dependent task. These results coincide with previous work in our labs that also found better performance for older adults in choice-dependent tasks (Worthy et al., 2011), and the present results suggest that qualitative age-based differences in the strategies used in choice tasks may underlie older adults’ advantage in choice-dependent tasks. We discuss possible factors behind these differences such as neurobiological changes associated with aging, and increased use of heuristics by older adults

    Criterial Noise Effects on Rule-Based Category Learning: The Impact of Delayed Feedback

    Get PDF
    Variability in the representation of the decision criterion is assumed in many category learning models yet few studies have directly examined its impact. On each trial, criterial noise should result in drift in the criterion and will negatively impact categorization accuracy, particularly in rule-based categorization tasks where learning depends upon the maintenance and manipulation of decision criteria. The results of three experiments test this hypothesis and examine the impact of working memory on slowing the drift rate. Experiment 1 examined the effect of drift by inserting a 5 s delay between the categorization response and the delivery of corrective feedback, and working memory demand was manipulated by varying the number of decision criteria to be learned. Delayed feedback adversely affected performance, but only when working memory demand was high. Experiment 2 built upon a classic finding in the absolute identification literature and demonstrated that distributing the criteria across multiple dimensions decreases the impact of drift during the delay. Experiment 3 confirmed that the effect of drift during the delay is moderated by working memory. These results provide important insights into the interplay between criterial noise and working memory as well as providing important constraints for models of rule-based category learning

    Alcohol-Naïve USVs Distinguish Male HAD-1 from LAD-1 Rat Strains

    Get PDF
    Ultrasonic vocalizations (USVs) are mediated through specific dopaminergic and cholinergic neural pathways and serve as real-time measures of positive and negative emotional status in rodents. Although most USV studies focus primarily on USV counts, each USV possesses a number of characteristics shown to reflect activity in the associated neurotransmitter system. In the present study, we recorded spontaneously emitted USVs from alcohol-naïve high alcohol drinking (HAD-1) and low alcohol drinking (LAD-1) rats. Using our recently developed WAAVES algorithm we quantified four acoustic characteristics (mean frequency, duration, power and bandwidth) from each 22 – 28 kHz and 50 – 55 kHz frequency modulated (FM) USV. This rich USV representation allowed us to apply advanced statistical techniques to identify the USV acoustic characteristics that distinguished HAD-1 from LAD-1 rats. Linear mixed models (LMM) examined the predictability of each USV characteristic in isolation and linear discriminant analysis (LDA) and binomial logistic regression examined the predictability of linear combinations of the USV characteristics as a group. Results revealed significant differences in acoustic characteristics between HAD-1 and LAD-1 rats in both 22 – 28 kHz and 50 – 55 kHz FM USVs. In other words, these rats selectively bred for high- and low-alcohol consumption can be identified as HAD-1 or LAD-1 rats with high classification accuracy (approx. 92-100%) exclusively on the basis of their emitted 22-28 kHz and 50-55 kHz FM USV acoustic characteristics. In addition, acoustic characteristics of 22 – 28 kHz and 50 – 55 kHz FM USVs emitted by alcohol-naïve HAD-1 and LAD-1 rats significantly correlate with their future alcohol consumption. Our current findings provide novel evidence that USV acoustic characteristics can be used to discriminate between alcohol-naïve HAD-1 and LAD-1 rats, and may serve as biomarkers in rodents with a predisposition for, or against, excessive alcohol intake

    Alcohol-preferring P rats emit spontaneous 22-28 kHz ultrasonic vocalizations that are altered by acute and chronic alcohol experience

    Get PDF
    BACKGROUND: Emotional states are often thought to drive excessive alcohol intake and influence the development of alcohol use disorders. To gain insight into affective properties associated with excessive alcohol intake, we utilized ultrasonic vocalization (USV) detection and analyses to characterize the emotional phenotype of selectively bred alcohol-preferring (P) rats; an established animal model of excessive alcohol intake. USVs emitted by rodents have been convincingly associated with positive (50-55 kHz frequency-modulated [FM]) and negative (22-28 kHz) affective states. Therefore, we hypothesized that 50-55 and 22-28 kHz USV emission patterns in P rats would reveal a unique emotional phenotype sensitive to alcohol experience. METHODS: 50-55 kHz FM and 22-28 kHz USVs elicited from male P rats were assessed during access to water, 15 and 30% EtOH (v/v). Ethanol (EtOH; n = 12) or water only (Control; n = 4) across 8 weeks of daily drinking-in-the-dark (DID) sessions. RESULTS: Spontaneous 22-28 kHz USVs are emitted by alcohol-naïve P rats and are enhanced by alcohol experience. During DID sessions when alcohol was not available (e.g., "EtOH OFF" intervals), significantly more 22-28 kHz than 50-55 kHz USVs were elicited, while significantly more 50-55 kHz FM than 22-28 kHz USVs were emitted when alcohol was available (e.g., "EtOH ON" intervals). In addition, USV acoustic property analyses revealed chronic effects of alcohol experience on 22-28 kHz USV mean frequency, indicative of lasting alcohol-mediated alterations to neural substrates underlying emotional response. CONCLUSIONS: Our findings demonstrate that acute and chronic effects of alcohol exposure are reflected in changes in 22-28 and 50-55 kHz FM USV counts and acoustic patterns. These data support the notion that initiation and maintenance of alcohol intake in P rats may be due to a unique, alcohol-responsive emotional phenotype and further suggest that spontaneous 22-28 kHz USVs serve as behavioral markers for excessive drinking vulnerability

    Alcohol enhances unprovoked 22-28 kHz USVs and suppresses USV mean frequency in High Alcohol Drinking (HAD-1) male rats

    Get PDF
    Heightened emotional states increase impulsive behaviors such as excessive ethanol consumption in humans. Though positive and negative affective states in rodents can be monitored in real-time through ultrasonic vocalization (USV) emissions, few animal studies have focused on the role of emotional status as a stimulus for initial ethanol drinking. Our laboratory has recently developed reliable, high-speed analysis techniques to compile USV data during multiple-hour drinking sessions. Since High Alcohol Drinking (HAD-1) rats are selectively bred to voluntarily consume intoxicating levels of alcohol, we hypothesized that USVs emitted by HAD-1 rats would reveal unique emotional phenotypes predictive of alcohol intake and sensitive to alcohol experience. In this study, male HAD-1 rats had access to water, 15% and 30% EtOH or water only (i.e., Controls) during 8 weeks of daily 7-h drinking-in-the-dark (DID) sessions. USVs, associated with both positive (i.e., 50-55 kHz frequency-modulated or FM) and negative (i.e., 22-28 kHz) emotional states, emitted during these daily DID sessions were examined. Findings showed basal 22-28 kHz USVs were emitted by both EtOH-Naïve (Control) and EtOH-experienced rats, alcohol experience enhanced 22-28 kHz USV emissions, and USV acoustic parameters (i.e., mean frequency in kHz) of both positive and negative USVs were significantly suppressed by chronic alcohol experience. These data suggest that negative affective status initiates and maintains excessive alcohol intake in selectively bred HAD-1 rats and support the notion that unprovoked emissions of negative affect-associated USVs (i.e., 22-28 kHz) predict vulnerability to excessive alcohol intake in distinct rodent models

    Category label and response location shifts in category learning

    Get PDF
    The category shift literature suggests that rule-based classification, an important form of explicit learning, is mediated by two separate learned associations: a stimulus-to-label association that associates stimuli and category labels, and a label-to-response association that associates category labels and responses. Three experiments investigate whether information–integration classification, an important form of implicit learning, is also mediated by two separate learned associations. Participants were trained on a rule-based or an information–integration categorization task and then the association between stimulus and category label, or between category label and response location was altered. For rule-based categories, and in line with previous research, breaking the association between stimulus and category label caused more interference than breaking the association between category label and response location. However, no differences in recovery rate emerged. For information–integration categories, breaking the association between stimulus and category label caused more interference and led to greater recovery than breaking the association between category label and response location. These results provide evidence that information–integration category learning is mediated by separate stimulus-to-label and label-to-response associations. Implications for the neurobiological basis of these two learned associations are discussed

    Procedural-Memory, Working-Memory, and Declarative-Memory Skills Are Each Associated With Dimensional Integration in Sound-Category Learning

    Get PDF
    This paper investigates relationships between procedural-memory, declarative-memory, and working-memory skills and adult native English speakers’ novel sound-category learning. Participants completed a sound-categorization task that required integrating two dimensions: one native (vowel quality), one non-native (pitch). Similar information-integration category structures in the visual and auditory domains have been shown to be best learned implicitly (e.g., Maddox et al., 2006). Thus, we predicted that individuals with greater procedural-memory capacity would better learn sound categories, because procedural memory appears to support implicit learning of new information and integration of dimensions. Seventy undergraduates were tested across two experiments. Procedural memory was assessed using a linguistic adaptation of the serial-reaction-time task (Misyak et al., 2010a,b). Declarative memory was assessed using the logical-memory subtest of the Wechsler Memory Scale-4th edition (WMS-IV; Wechsler, 2009). Working memory was assessed using an auditory version of the reading-span task (Kane et al., 2004). Experiment 1 revealed contributions of only declarative memory to dimensional integration, which might indicate not enough time or motivation to shift over to a procedural/integrative strategy. Experiment 2 gave twice the speech-sound training, distributed over 2 days, and also attempted to train at the category boundary. As predicted, effects of declarative memory were removed and effects of procedural memory emerged, but, unexpectedly, new effects of working memory surfaced. The results may be compatible with a multiple-systems account in which declarative and working memory facilitate transfer of control to the procedural system
    corecore