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USV DIFFERENCES BETWEEN HAD-1 AND LAD-1 RATS

Abstract

Ultrasonic vocalizations (USVs) are mediated through specific dopaminergic and
cholinergic neural pathways and serve as real-time measures of positive and negative emotional
status in rodents. Although most USV studies focus primarily on USV counts, each USV
possesses a number of characteristics shown to reflect activity in the associated neurotransmitter
system. In the present study, we recorded spontaneously emitted USVs from alcohol-naive high
alcohol drinking (HAD-1) and low alcohol drinking (LAD-1) rats. Using our recently developed
WAAVES algorithm we quantified four acoustic characteristics (mean frequency, duration,
power and bandwidth) from each 22 — 28 kHz and 50 — 55 kHz frequency modulated (FM) USV.
This rich USV representation allowed us to apply advanced statistical techniques to identify the
USV acoustic characteristics that distinguished HAD-1 from LAD-1 rats. Linear mixed models
(LMM) examined the predictability of each USV characteristic in isolation and linear
discriminant analysis (LDA) and binomial logistic regression examined the predictability of
linear combinations of the USV characteristics as a group. Results revealed significant
differences in acoustic characteristics between HAD-1 and LAD-1 rats in both 22 — 28 kHz and
50 — 55 kHz FM USVs. In other words, these rats selectively bred for high- and low-alcohol
consumption can be identified as HAD-1 or LAD-1 rats with high classification accuracy
(approx. 92-100%) exclusively on the basis of their emitted 22-28 kHz and 50-55 kHz FM USV
acoustic characteristics. In addition, acoustic characteristics of 22 — 28 kHz and 50 — 55 kHz FM
USVs emitted by alcohol-naive HAD-1 and LAD-1 rats significantly correlate with their future
alcohol consumption. Our current findings provide novel evidence that USV acoustic

characteristics can be used to discriminate between alcohol-naive HAD-1 and LAD-1 rats, and
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may serve as biomarkers in rodents with a predispodor, or against, excessive alcohol

intake.

Key words:Linear Mixed Model; Linear Discriminant AnalysiBjnomial Logistic Regression;

Selectively bred Rats; Alcoholism Biomarker
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Introduction

Drug addiction is a chronic relapsing disorder veitstrong emotional component.
During initial use, drugs of abuse hijack the malbrreward system to produce euphoria and
heightened positive emotional states (Wise & K&ili,4). Persistent or chronic use of these
drugs results in a shift in the baseline homeastatiivity of these systems and results in the
emergence of a negative affective or withdrawdkestéhen the drug is no longer present (Koob
& Volkow, 2016). The onset of this negative stat@am important aspect of the transition from
recreational drug use to drug dependence. Moremaividuals with pre-existing negative
affective states either due to depression (Corirguart, & Gamble, 2009; Schuckit, Smith, &
Chacko, 2006), posttraumatic stress (Gilpin & WEei2€16), or early life adversity (Cornelius,
De Genna, Goldschmidt, Larkby, & Day, 2016) arellkto engage in relapse like behaviors
(Watkins, Franz, DiLillo, Gratz, & Messman-Moor&)1%5) which can further increase their risk
of developing a substance use disorder (SUD). Eurtbre, strategies aimed at improving
emotional regulation have shown promise in reduding abuse behaviors (Tang, Tang, &
Posner, 2016). Together these studies highligiihaortant need for understanding the role of

emotion in promoting hazardous drug use.

Emotion has been described as a complex psychalasjate with three components: i) a
subjective experience, ii) an underlying neuralsstgte, and iii) an expressive/behavioral and/or
autonomic response (Chiurchiu & Maccarrone, 20TI6g clinical studies described above show
a clear relationship between the subjective expeeéinternal and/or external) produced by
alcohol and other drugs of abuse and the resudtingtional response. However, since there are
few reliable pre-clinical models of emotion, theured substrates that underlie these phenomena

are not well understood.
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Ultrasonic vocalizations (USVs) have been iderdifés real-time functional measure of
emotional status in rodents (Brudzynski, 2009, 20C8nverging evidence from ethological,
pharmacological, and neuroanatomical studies hasrskthat 22 — 28 kHz USVs occur in
response to alarm, punishment, or avoidance betsaaia typically represent negative affective
status; while 50 — 55 kHz frequency modulated (ENBVS, directly evoked by dopamine
release (Scardochio, Trujillo-Pisanty, Conoverz8él, & Clarke, 2015) and produced in
response to rewarding stimuli including food, drumssex are thought to represent positive
affective states (Knutson, Burgdorf, & PanksepfZ0OMoreover, each USV is
multidimensional and is characterized by a richo$etcoustical properties, including frequency
(kHz), duration, bandwidth and power. 22 — 28 k#&V counts and acoustic characteristics can
be directly regulated by cholinergic agonists anthgonists (Brudzynski, 2001; Brudzynski &
Bihari, 1990) and 50 — 55 kHz FM USVs can be diyectgulated by activating (Ahrens et al.,
2013; Maier, Abdalla, Ahrens, Schallert, & Duvaut#e2012) or inhibiting (Williams &

Undieh, 2010; Wintink & Brudzynski, 2001) the dopagrgic system. Other neurotransmitter
systems also shown to modulate USV activity incltieeneurotensin (Prus, Hillhouse, &
LaCrosse, 2014; Steele, Whitehouse, Aday, & Pras7R 5-HT (Beis et al., 2015; Wohr, van
Gaalen, & Schwarting, 2015) and adenosine (Sin@xesta, & Morelli, 2016) systems.
Therefore, spontaneous baseline USV activity miyrenportant information about underlying

neurotransmission.

Animal models of high alcohol consumption revealr@imate relationship between
USVs and propensity for excessive drinking. Fomeple, the selectively bred alcohol preferring
(P) and alcohol non-preferring (NP) rats are eghbtl rodent models of high alcohol drinking

and alcohol avoidance, respectively. The high-adtalninking (HAD-1) and low-alcohol-
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drinking (LAD-1) rats are another such model thaissy many of the criteria for an animal
model of alcoholism, such as high levels of alcatwrisumption during adolescence and
adulthood, pronounced alcohol seeking behavioi aanalcohol deprivation effect under
relapse conditions (Bell, Rodd, Engleman, Toals€oNcBride, 2014; McBride, Rodd, Bell,
Lumeng, & Li, 2014). In two studies from our labtmgy we found that P and HAD-1 rats
spontaneously emit significant numbers of negaditect USVs even in the alcohol-naive state

(Reno et al., 2015; Thakore et al., 2016).

Our recent development of a MATLAB-based alpon (WAAVES) (Reno & Duvauchelle,
2014; Reno, Marker, Cormack, Schallert, & Duvaulgh€l013) automates the tabulation of
USV counts and acoustic characteristics, therdoyalg us to conduct long term studies
exploring counts and acoustic characteristics ohsgneously emitted USVs over multiple
recording sessions. Using this tool, we conductstlidy focused just on P and NP rats (Reno et
al., 2017) and found that alcohol-naive P and N&gan be distinguished based solely on the
acoustic properties associated with 22 — 28 kHz £ISVhe ability to distinguish between high-
and low-drinking lines according to USV profilegygests that drinking propensity and USV
emissions may be regulated by common neural suésirBhe present study aims to extend our
previous findings and examine whether either pasitir negative affect-associated USV
acoustic properties can similarly be used to digtish between alcohol-naive HAD-1 and LAD-

1 rats.

This work embraces the multidimensional natureaahelUSV and subjects these USVs
to multivariate statistical procedures includingelar mixed modeling, linear discriminant
analysis and binomial logistic regression. Lineatad modelindhas a number of advantages

over more traditional ANOVA based approaches. kangle, rather than using individual or
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group means, each and every USV acoustic charstatas input into the analyses, resulting in a
full representation of all data. The goal of lind&criminant analysis is to estimate the linear
“discriminant” that best separates the multidimenal USVs associated with two groups of rats.
In essence, multivariate data is linearly combiteepgroduce a univariate variable aimed at
separating groups. We use a 10,000-iteration trgitest bootstrapping procedure to fit the
model and to determine whether the percent of dsiowrectly classified by linear discriminant
analysis is significantly above chance. Binomigjistic regression is similar in spirit to linear
discriminant analysis in that the goal is to disgnate two groups of rats from a linear
combination of the USV acoustic characteristicse @lference is that binomial logistic
regression makes fewer assumptions regarding tineenaf the underlying distributions. By
including both linear discriminant analysis anddsmal logistic regression we can look for

convergence in the conclusions drawn.

Using these powerful analytic tools, the goal @ gtudy was to determine whether
HAD-1 and LAD-1 rats could be distinguished soligtyn the acoustic characteristics associated
with spontaneous USVs emitted in the alcohol-nata&e. In this study, linear mixed modeling
was used to assess whether the mean frequencyiodutzandwidth, or power of 22 — 28 kHz
and 50 — 55 kHz FM calls differed significantly Wween the HAD-1 and LAD-1 rat lines. Next,
we used linear discriminant analysis to determihetiver a linear combination of these four
acoustic characteristics could be used to distsigbtiAD-1 from LAD-1 rats. Lastly, we cross-

validated the LDA results using binomial logistegression.

Methods
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Animals

Male high alcohol drinking rats (n = 6; HAD-1 ratgeneration 65) and low alcohol
drinking rats (n = 6; LAD-1 generation 64) wereahed from Indiana University School of
Medicine, Indianapolis, IN, at approximately 32 dayd. Animals were handled 5 days per
week for 4 weeks to habituate them to experiment&he University of Texas Institutional

Animal Care and Use Committee (IACUC) approvedalising and experimental procedures.
Ultrasonic Vocalization Recordings

HAD-1 and LAD-1 rats were recorded under alcohdireaonditions. Following the
habituation period, USVs were recorded in 4 hossigms for 3 days/week for 4 weeks. CM16
microphones were used with an UltraSound Gatefader(Avisoft Bioacoustics) to record
USVs at a 250-kHz sampling rate and a 16-bit reégmiuOn recording days, animals were
weighed at the beginning of the dark cycle, transgabto a test room, and placed into recording
cages (which were identical to their home cageobiit used for USV recordings) for 4h test
sessions. Each animal was assigned its own regpedige in order to prevent any non-specific
behaviors related to novelty or conspecific scéwshr, Houx, Schwarting, & Spruijt, 2008).
Based on rat and chamber size, we approximateistende between the animal’s head and the
centered microphone to range from 5 cm to 28.4After the recording session, the animals

were transported back to the vivarium and retutogtieir home cage.
Analysis of USVs

Ultrasonic vocalization recordings were analyzedgithe WAAVES program (Reno &
Duvauchelle, 2014; Reno et al., 2013). This prograads audio files and produces a frequency

spectrogram. The spectrogram is then scanned @imdsobjects using MATLAB’$mage
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Processing ToolbogMathWorks, Inc. Natick, MA). For 50 — 55 kHz FM¥s, WAAVES
identifies sound objects with a minimum duratiorbahs occurring in a range of 30 — 120 kHz.
An inter-call interval of 10 ms was used to disénate between individual calls and avoid
counting call fragments as separate calls. FM UB&t® defined as calls that varied more than 5
kHz over the entire duration of the call. 22 — 2&lcalls were identified as sound objects
occurring in a frequency range of 20 to 30 kHz vatininimum duration of 200 ms. An inter-
call interval of 100 ms was used to separate idda calls. These call parameters were derived
from the existing literature as well as extensied-and-error testing in the laboratory. Some
preliminary tests of the robustness of these patensh@vere undertaken during development of
the WAAVES algorithm. Generally speaking, the resulere robust to small changes in the
WAAVES parameters. Once the calls are identifiedesal measurements of interest are
extracted from each USV call and stored for subseganalysis. The mean frequency, duration,
bandwidth, and power for both 50-55 kHz FM and 32ddz calls were used for statistical

analysis.

Validation Process for WAAVES Automation. Validation of WAAVES-generated
USV data requires correspondence with human-deaneatses. Experimenters manually
analyzed subsets of USV data recorded during thererent to compare human assessment
with WAAVES output. USV data subsets used for mamabdation consisted of 80 (out of
3456) 10-min USYV files recorded from HAD and LADOga The total number of calls identified
via manual analysis was correlated with the totmhber of calls identified by the automated
WAAVES program. Separate correlations were alsauaoted for each group (i.e. HAD and
LAD) in order to confirm comparable findings acraaslines. The correlation coefficients are

reported in the results.
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EtOH Drinking Sessions

Following the USV recording experiments the rateieed chronic intermittent access to
three bottle choice alcohol (water, 15% EtOH, 3080H) in the home cage, 24 hrs/day, 3
days/week (e.g. Monday, Wednesday, Friday) for dksen order to validate high vs low

alcohol consumption between the selectively bredHAand LAD-1 rats.
Statistical Approach

A standard statistical approach would utilize repéaneasures ANOVA to analyze the
USV data. In this approach, all calls emitted bgtaare used to calculate an average, and then
any potential group differences in these averageassessed. Thus, this method results in loss
of important information pertaining to the intediwidual variability in USV calls for each rat,
which, in turn, reduces power. To overcome thesblpms, we used linear mixed models to
examine the effect of selective breeding (e.g. HAs LAD-1) on total USV counts and the
pattern of USV acoustic characteristics (e.g. nfesguency, duration, bandwidth, or power).
Linear mixed models allow us to use the data frértha calls emitted by each rat, and can also
assess for random day-to-day variation due to tegdeaeasurements even in the event of
missing data at any of the time points measured sifnificant group effect was observed, its
impact on the model's goodness of fit was testedrbgting a reduced null model without the
group, and then by comparing the reduced model thétfull model using an ANOVA. The p-

values resulting from the ANOVA are also reported.

Linear Mixed Models. We assessed differences in total USV counts artd @ate four
USV characteristics as a function of rat line usarigmear mixed model in R (R Core Team,
2015) using the package “ImerTest” (KuznetsovacBhnoff, & Christensen, 2016). The linear

models were generated for each experimental graugaich of the 4 acoustic characteristics of

10



USV DIFFERENCES BETWEEN HAD-1 AND LAD-1 RATS

interest. The models were used to assess the effente, rat line, or an interaction of these
factors on each of these characteristics. Wheresgganificant effect was observed a new
reduced model was generated by removing the stgmififactor and compared with the original
model using an ANOVA in order to assess the impéthte respective factor on the goodness-
of-fit for the model. The resulting model is a reggion equation where the intercept and slope is

allowed to vary for each rat:

YAcoustic Characteristic— ﬁo + ,BRat LinexRat Line* ﬁSet DayXSet Day+ WRat + URat*Set Day

whereYacoustic characteristidS the acoustic characteristic being modeled (aaan frequency,
duration, bandwidth, or power), each predictorafale is represented by its subscripte d\Ka:
represents the random effect of each individuala@llUrarset payrepresents the random effect
of day to day variation for each rat. A random slgpefficient was included to protect against
potential noise introduced by random day-to-dayat@mn in call parameters for each rat. The
coefficients f) are estimated and assessed for significancésasthe contribution to the

goodness of fit of the model was assessed.

Linear Discriminant Analysis. LMM focuses on each acoustic property in isolatibo.
assess the combined interactive effect of all td8W characteristics we applied linear
discriminant analysis (LDA) using the R package “BI& (Venables & Ripley, 2002) to
determine if a linear combination of these data easable of distinguishing the rat lines (e.g.,
HAD-1 vs LAD-1). A linear combination of the multiviate data is used to calculate a univariate
(discriminant) value that represents the maximupassion between the groups. Thus, the LDA
can be used to determine whether USVs, across tacoharacteristics, emitted by alcohol-naive

HAD-1 rats differ from those emitted by alcoholvaiLAD-1 rats. Because we were interested

11
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in examining the ability of these acoustic chanasties to distinguish rat lines, we assessed all

USVs emitted by each group (e.g. HAD-1 rats and EAEats) without reference to time.

Since the data are used in building the moded, poissible that the best fitting model
would be specific to the data used and may notgsaciy generalize to the population as a
whole. To address this issue and ensure the geradyidity of the model, we split the data into a
training and testing subset; where one half ofathienals are used to train the model and the
remaining half are used to test it. When dividihg groups into training and testing subsets, it is
possible that certain combinations of animals wisch subset may be more (or less)
representative of the entire dataset and, in tias, the ability of the model to accurately
separate the groups. Thus, in order to producearae assessment, we repeated the LDA
10,000 times, each time randomly selecting hathefdata as our training set and using the
remaining half to test the model. We then comptitedoercent of animals correctly assigned to
their group for each of the 10,000 iterations. The resultirsgribution allows us to estimate the
average percent correct and standard error for iearettion, thereby allowing us to compute
95% confidence intervals around the mean percenécidfor the 10,000 trials. If the model
performs no better than chance alone, we wouldaX§@6 of the animals to be correctly
categorized. Therefore, if the 95% confidence wrgkaround the average percent correct
includes 50% we cannot conclude that the modetitopming better than chance at an alpha

level of 0.05.

! To compute the percentage of animals correctlignssd to their groups by the LDA, we first computhd
average LDA value across all USVs emitted by eaxinal. Next, we combined the average USV LDA valfogs
each animal to compute the group averages for HAEDALLAD-1 rats. We then calculated the midpoirtveen
these two means and used this midpoint as theidedsundary for separation. The animals were thassified as

HAD-1 or LAD-1 based on the side of the decisiontdary on which their LDA values clustered.

12
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Binomial Logistic RegressionBinomial logistic regression was performed simitathe
LDA. The data were randomly split into two groupeg group was used to train the model and
the other group was used to test the classificatemuracy of the model. Unlike the LDA that
produces linear discriminant coefficients, the $tigi regression provides probability values for
whether a call belongs to a HAD-1 or LAD-1 rat. 8anto the LDA, we then averaged the call
probabilities to obtain the average probability éach rat. These rat probabilities were then
grouped by HAD-1 or LAD-1 and the midpoint betweka probabilities was used as the
decision boundary for separation. This processalssrepeated 10,000 times and the mean

classification accuracy and 95% confidence intefmathese iterations are reported.
Results

Linear Mixed Models

22 — 28 kHz USVsWe began by examining differences in USV countsoRAbl-naive
HAD-1 (total call counts = 854.83 + 259.71) and LAOtotal call counts = 613.33 £ 289.52)
rats spontaneously emitted 22 — 28 kHz USVs duhegi-hour recording sessions. However, no
significant effect of rat line was observed ontibial number of calls emitted. Next, we
examined the USV acoustic properties. We obserngufisant group*day interactions on the
mean frequency (p < 0.0003s4= 3.974; Figure 1a), duration (p < 0.000%s 5= 4.591; Figure
1b) and power (p < 0.00%sts=-3.319; Figure 1d), but not the bandwidth (p.¥®, t336= -
1.461; Figure 1c) of 22 — 228 kHz USVs. Removahefinteraction significantly reduced the
goodness-of-fit for the model for each of the thpaeameters: mean frequency (p < 0.0¢61,
=15.397), duration (p < 0.00042 =16.333), and power (p < 0.0£,=10.751). However, visual
analysis did not reveal any clear group*day treftds. possible that theses test may be too

sensitive to the within-subject day-to-day varidgpibbserved in USV calls. Therefore, the main

13
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effect of group was also analyzed for each acogsticacteristic whether or not a group*day
interaction was observed. We found a significafeafof rat line on the duration (p < 0.0001,
too02 = -25.02; Figure 1b), and power (p < 0.00Qdsst= 4.946; Figure 1d) of 22-28 kHz USVs
of alcohol-naive HAD-1 and LAD-1 rats. No such effef rat line was observed on the mean
frequency (p = 0.303gdos = 1.03; Figure 1a) or bandwidth (p = 0.1514,4= 1.438; Figure 1c).
Removal of the group effect resulted in a signific@eduction in the goodness-of-fit of the linear

mixed model for both the duration (p < 0.00§1=592.38) and power (p < 0.00Gf,= 24.06).

In summary, there were statistically significantgp*day interactions in the mean
frequency, duration and power, but not the bandwidi22 — 28 kHz USVs, although the
directionality of these interactions was not appaterough visual analysis. We also observed a
significant effect of rat line between alcohol-raiAD-1 and LAD-1 rats on the duration and
power of 22 — 28 kHz calls. Post-hoc analyses dideveal any clear differences in the call
power of 22-28 kHz USVs between HAD-1 and LAD-1srdhe LAD-1 rats made longer calls
than HAD-1 rats on all recording days over the £&kvperiod. No further effects were observed

on the mean frequency or bandwidth of 22 — 28 ki$x/6l

Next, we used regression analyses to determinehehtite USV acoustic properties of
22 — 28 kHz calls corresponded with future alcat@yisumption in these rats. We found a
significant negative correlation between the dorabvf 22 — 28 kHz calls and future EtOH
consumption (R = -0.866, p < 0.01) in the combik&D-1 and LAD-1 sample. No further
correlations were observed between EtOH consumptdinthe mean frequency, bandwidth or

power of 22 — 28 kHz calls.

50 — 55 kHz USVsWe again began with an examination of USV countsfaltowed

with analyses of the USV acoustic characterisBcgh HAD-1 (total call counts = 272 + 44.84)

14
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and LAD-1 (total call counts = 168.17 + 34.38) ramsitted spontaneous 50 — 55 kHz FM USVs.
There was a significant effect of rat line on tb&at number of USVs emitted (p < 0.0ls=
2.396). Removing the effect of rat line resulte@isignificant reduction in the goodness-of-fit of
the model (p < 0.057 =5.3354). There were no significant group*day iiatgions for the mean
frequency (p = 0.212gd.270= -1.259), duration (p = 0.873,4%2,= -0.164), bandwidth (p =

0.602, t9.906= -0.529) or power (p = 0.108;b70= -1.663) of 50 — 55 kHz FM calls. However,
significant effects of rat line were observed ia thean frequency (p < 0.0003g9t:1= 9.896;
Figure 2a), duration (p < 0.0001s $70= 14.72; Figure 2b), bandwidth (p < 0.0003;780= -

5.248; Figure 2c¢), and power (p < 0.0:b410= -3.18; Figure 2d) of 50 — 55 kHz FM USVs of
alcohol-naive HAD-1 and LAD-1 rats. Removing thifeet significantly reduced the goodness-
of-fit for the model regarding each of the fourgaeters: mean frequency (p < 0.00f1,
=89.31), duration (p < 0.000#2 =117.48), bandwidth (p < 0.000#,=25.963), and power (p <

0.01,x* =8.3959).

In summary, although we did not see any group*dégraction in any of the
characteristics measured, there were statistisalyificant group differences between alcohol-
naive HAD-1 and LAD-1 rats in USV counts, mean frexacy, duration, bandwidth and power
of 50 — 55 kHz FM calls. The HAD-1 rats made calith a higher mean frequency and longer
duration than the LAD-1 rats, while the LAD-1 ratade calls with a wider bandwidth. The

effect of rat line on USV dB levels (e.g., poweft}ltese calls was not clear.

Regression analysis was used to determine whétb&d$V acoustic properties of 50 —
55 kHz FM calls corresponded with future alcohalgamption in these rats. We found a
significant positive correlation between future Bt@onsumption and the mean frequency (R =

0.690, p < 0.05) and duration (R = 0.899, p < 0)@50 — 55 kHz FM USVs in the combined

15
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sample. In addition, a significant negative coiielawas observed between EtOH consumption
and the bandwidth (R = -0.815, p < 0.01) of 50 kB% FM calls in the combined sample.
There was no significant correlation between Et@Hsumption and the power of 50 — 55 kHz

FM calls emitted by these rats.
Linear Discriminant Analysis

After assessing the differences between HAD-1 ahD-11 rats on total emitted calls and
each individual acoustic characteristic using lima&ed models, we sought to examine whether
it was possible to discriminate these groups bggiaicombination of the mean frequency,
duration, bandwidth, and power of USV calls. Ong waachieve this is to use a linear
discriminant analysis, a statistical and machirm@rdag method used to separate two or more
classes of objects (e.g. HAD-1 vs. LAD-1) base&dinear combination of explanatory
variables. To achieve this aim, we split our data [testing and “training” subsets and used the
bootstrapping approach described in the statistiegthods above. Once we were confident that
the LDA model could accurately classify the twasts we generated a new equation using the

entire data set in order to calculate the coeflits@ssociated with each acoustic characteristic.

22 — 28 kHz USVsThe LDA equation calculated using the mean frequedaration,
bandwidth, and power of 22 — 28 kHz USVs from atdatmive rats resulted in perfect
characterization of HAD-1 and LAD-1 rats in 3,6 /lee 10,000 iterations. The mean
classification accuracy was 81.96%, and the 95%d®mce interval was 50% - 100%. Though
it should be noted that 9,283 out 10,000 iteratjmosiuced classification accuracy greater than
66.66%. For the LDA equation the order of the degreseparation contributed by each of the
acoustic characteristics was as follows: call damatpower, bandwidth, and mean frequency.

With call duration contributing the most to the aegtion and mean frequency contributing the

16
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least. Applying LDA to the full complement of thatd resulted in a maximum separation
accuracy of 91.66% (Figure 3a). The correspondgqugton coefficients are listed in the table

below (Table 1).

50 — 55 kHz USVsThe LDA equation calculated using the mean frequetharation,
bandwidth, and power of 50 — 55 kHz USVs from atdatmive rats resulted in perfect
characterization of HAD-1 and LAD-1 rats for all,Q00 iterations. Therefore, the mean
classification accuracy was 100% and the 95% cenfid interval was the same (Figure 3a).
The order of contribution to the separation capawfithe model was: call duration, mean
frequency, power, and bandwidth. Applying the L@4the full complement of data also
resulted in complete separation of the two ratslifiéhe corresponding equation coefficients are

listed in the table below (see Table 1).
Binomial Logistic Regression

While linear discriminant analysis is a well-estsivkd method of classifying a binary
data set (such as the HAD-1 vs. LAD-1 data) usmigpendent predictor variables (such as
USV acoustic characteristics), it relies on thaeiag#tion that these predictor variables are
normally distributed. In order to test the disttiba of our data we performed a Shapiro-Wilk
normality test and found that none of the four alales of interest had a normal distribution.
Although small deviations in normality are not tightito significantly impact the outcome of
LDA, the lack of normality in our data highlightélse need to further validate the results
achieved with the LDA approach using a second nietBomomial Logistic Regression is
another such technique that can be used to delietgy classification models, which relies on
fewer assumptions than the LDA method (Pohar, Baburk, 2004). Thus, the logistic

regression approach might be better suited inmesgmwhere the assumptions of the LDA are
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violated. We performed logistic regression in a mersimilar to the LDA method described
above. The data were split into testing and trgisinbsets and the classification accuracy was
measured. The process was repeated 10,000 tinteheamean and its 95% confidence interval

for classification accuracy are reported.

22 — 28 kHz USVsThe binomial logistic regression equation calcudaising the mean
frequency, duration, bandwidth, and power of 2B8-kBEz USVs from alcohol-naive rats
resulted in perfect characterization of HAD-1 amkl-1 rats in 5,044 of the 10,000 iterations.
The mean classification accuracy was 91.74%, am@%6 confidence interval was 83.33% -
100%. Similar to the LDA results when logistic reggion was applied to the full complement of
data, a separation accuracy of 91.66% was achigvgdre 3b). The corresponding logistic

equation coefficients are reported in the tablewdlksee Table 2).

50 — 55 kHz USVsThe binomial logistic regression equation calcudaising the mean
frequency, duration, bandwidth, and power of 5G-kHz USVs from alcohol-naive rats also
resulted in perfect characterization of HAD-1 aml-1 rats for all 10,000 iterations. As such,
the mean classification accuracy was also 100%la85% confidence interval was the same
(Figure 3b). The corresponding logistic equatioefficients are reported in the table below

(Table 2).

Together, these results show that the logisticaggion approach is indeed more robust
than the LDA approach in classifying “unseen” détawever, when applied to the complete
dataset, the LDA provides similar accuracy. Thias,BLR provides strong confirmatory support

for the present LDA results.

Alcohol Consumption
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Repeated-measures ANOVA revealed a significantgylgutime interaction for EtOH
consumption levels (p < 0.0013:F10= 3.72; Figure 4a). Pearson’s correlation analysis used
as a post-hoc measure to further explore the dgogupne interaction. As expected, escalation in
alcohol intake was observed over time in HAD-1 (ats 0.387, p <0.001; Figure 4b), but not in

LAD-1 rats (r = -0.153, p = 0.20).
Validation of USV Analysis

WAAVES-automated analysis and manual analysis teswdre highly correlated for
both the 22 — 28 kHz calls (r = 0.996) and 50 kB2 (r = 0.936). Correlation analyses run
separately for HAD and LAD 22-28 and 50-55 kHz US¥swed comparable high
correspondence across lines between WAAVES and ingmaved counts (HAD: 22 — 28 kHz:

r=0.997; 50 — 55 kHz: r = 0.940; LAD: 22 — 28 kHz 0.999; 50 — 55 kHz: r = 0.946).

Discussion

Ultrasonic vocalizations are established markergositive and negative affective states
in rodents. A plethora of studies have shown tiifégrént types of USV calls can be elicited by
a wide variety of behavioral and pharmacologicahipalations. These calls are especially
sensitive to modulation by dopaminergic, as welicaslinergic agonists and antagonists
(Brudzynski, 1994; Brudzynski et al., 2011; Sim@@al5). In the present study, we explored
whether USV acoustic characteristics from alcolail/a rats can be used to discriminate
between selectively bred high- and low-alcohol king rats. We found clear differences in the
acoustic characteristics of 50 — 55 kHz FM and 28-kHz USV calls between alcohol-naive

HAD-1 and LAD-1 rats. Moreover, we were able to ogchine-learning algorithms to
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accurately identify rats as HAD-1 vs LAD-1 exclusliy on the basis of USV acoustic parameter

data.

Frequency modulated 50 — 55 kHz USVs may servaomsankers of activity in the
mesolimbic dopaminergic system. This activity isasated with positive affective states (i.e.,
reward and positive reinforcement). Studies hawsvsithat these calls can be directly evoked
by dopamine release (Scardochio et al., 2015) asttuiated by pharmacological manipulations
of dopaminergic transmission. For instance, adrration of psychostimulants such as cocaine,
amphetamine, and methylphenidate, which are knovimctease mesolimbic dopaminergic
activity, dose dependently increases the total rairob50 — 55 kHz FM USV calls in rodents
(Ahrens, Ma, Maier, Duvauchelle, & Schallert, 20B8@rgdorf, Knutson, Panksepp, & Ikemoto,
2001; Maier et al., 2012). In addition to the iraged call counts, amphetamine administration
has also been shown to increase in the mean freg@aen bandwidth of 50 — 55 kHz calls
(Brudzynski et al., 2011; Simola, 2015). Furthereadhese changes could be reversed via D1
and D2 receptor antagonism, or through experimel@gitadation of the nigrostriatal
dopaminergic pathway (Ciucci et al., 2009; Wint&aBrudzynski, 2001; Wright, Dobosiewicz,

& Clarke, 2013).

In the present study, we showed that alcohol-nEH&B-1 rats not only emitted more
spontaneous 50 — 55 kHz FM USVs than the LAD-1, taisthe calls emitted by the HAD-1 rats
also had a higher mean frequency, narrower bantiyaditd longer duration than the calls
emitted by the LAD-1 rats. These results, in cormbon with the previous findings about the
neural substrates underlying 50 — 55 kHz USVs, ssigipat HAD-1 rats may have enhanced
basal dopaminergic activity as compared to the LIARsS. Interestingly, alcohol-preferring

HAD and P rat lines display 10 — 30% lower tissesmels of dopamine and its metabolites
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(dihydroxyphenylacetic acid and homovanillic adi}he nucleus accumbens (Acb) and the
anterior striatum when compared to their LAD anddéBnterparts, respectively (Gongwer,
Murphy, McBride, Lumeng, & Li, 1989; Murphy et a2002). Though these results may seem
paradoxical at first, lower in vitro basal tissugpdmine levels are thought to mediate increased
dopaminergic activity as a compensatory mechanisgdeed, ventral tegmental area (VTA)
dopamine neurons were found to have increased tumgtin P rats (Morzorati & Marunde,
2006). Although a similar increase in burst firiwgs not seen in HAD-1 rats, other in vivo
studies have shown increased levels of extracelldpamine in the HAD-1 rats when compared
with the LAD-1 rats (Katner & Weiss, 2001). Thisc@nsistent with increased dopaminergic
activity. More recent research has shown that HA2t4 have elevated catechol-O-methyl
transferase (COMT) mRNA in the posterior VTA, Adiel, and central amygdala compared
with LAD-1 rats (McBride et al., 2012, 2013). COMnhzymatically breaks down dopamine, and
other catecholamines, which provides further supfoorincreased dopaminergic activity in the
extended amygdala of HAD-1 vs LAD-1 rats. Althowgh did not directly measure
dopaminergic activity in the present study, knowffedences in dopaminergic transmission
between HAD-1 and LAD-1 rats are consistent withfoudings that these rat lines can be
identified exclusively according to the acoustiaiccteristics of their emitted 50 — 55 kHz FM

USVs.

Emission of 22 — 28 kHz USVs, on the other handssociated with medial cholinergic
transmission. Contrary to 50 - 55 kHz FM USVs, ZBkHz USVs are associated with anxiety
and other negative affective states (Brudzynskd92@013). These types of calls can be directly
induced with cholinergic activation of the medigpbthalamic/preoptic region in rodents, via

carbachol (Brudzynski & Bihari, 1990), and convérsean be antagonized with application of
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cholinergic antagonists, such as atropine and saopioe (Brudzynski, 2001). Furthermore, the
acoustic characteristics, such as call duratiowgppand bandwidth, of 22 — 28 kHz USVs were

also modulated by carbachol administration in sedtependent manner (Brudzynski, 1994).

In this study, we found that the significant di#faces in the acoustic characteristics of
spontaneously emitted 22 — 28 kHz USV call duraéind power between HAD-1 and LAD-1
rats varied enough to develop a linear discrimimaodel that could discriminate between HAD-
1 and LAD-1 rats with high accuracy. Unfortunatelg, study to date has explored potential
differences in cholinergic transmission between HABnd LAD-1 rats. Therefore, future
studies will need to investigate the cholinergisteyn in HAD-1 and LAD-1 rats, in order to
determine whether the differences in 22 — 28 kH¥ \d€oustic characteristics between HAD-1
and LAD-1 rats are associated with correspondiffgrginces in cholinergic transmission in

these rat lines.

Previous work conducted in our lab showed that 28 kHz USV acoustic features
could be used to accurately discriminate betweé#s emitted by P vs NP rats (Reno et al.,
2017). Moreover, these differences were in lindpiiblished literature on differences in
cholinergic transmission between P and NP ratd @ell., 2016). Here we show that similar to
the P/NP rat lines, alcohol-naive HAD-1 and LADatsralso have differences in the acoustic
characteristics of spontaneously emitted 22 — 28 UBVs. However, as indicated above,
unlike the P/NP rats, HAD-1 and LAD-1 rats alsodaveasurable differences in the acoustic

characteristics of spontaneous 50 — 55 kHz FM USVs.

Finally, we show that acoustic characteristics2+28 kHz and 50 — 55 kHz FM USVs
spontaneously emitted by alcohol-naive HAD-1 andDtRrats correlate with future alcohol

consumption of these rats. Our current findingyjgl® novel evidence that USV acoustic
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characteristics can be used to discriminate betatmhol-naive HAD-1 and LAD-1 rats, and
may serve as biomarkers in rodents with a predispogor, or against, excessive alcohol

intake.
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Table 1

COEFFICIENTS FORLINEARDISCRIMINANTANALYSIS

USV Subtype BMean Frequency Bouration Beandwidth Brower
22 — 28 kHz -0.3676575 -0.8221113 0.4190684 -0.7509814
50 -55kHz FM 0.6065341 0.7826930 -0.2455201 -0.2847963

Note.The coefficients represent tfevalues associated with each acoustic characteuséd to
calculate the linear discriminant values for ea2hk-28 kHz or 50 — 55 kHz frequency
modulated (FM) call. The magnitude of these cogffits represents the contribution of the

respective acoustic characteristic to the totahsspn achieved by the LDA model.
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Table 2

COEFFICIENTS FORBINOMIAL LOGISTICREGRESSION

USV Subtype Bo BMean Frequency Bouration BBandwidth Brower

22 -28kHz 0.51509+ -0.62074 + -1.46758 +  0.94335+ -1.17084 *

0.03061 0.03114 0.04180 0.04741 0.03414

50 -55kHz FM 0.61281 + 0.51768 * 0.80332 + -0.20861 + -0.27239 *

0.04622 0.04557 0.05774 0.04334 0.04560

Note.The coefficients represent tievalues associated with the intercdf) @nd each acoustic
characteristic used to calculate the log odds fatieach 22 — 28 kHz or 50 — 55 kHz frequency
modulated (FM) call. The magnitude of these cogdfits represents the contribution of the
respective acoustic characteristic to the totahs#pn achieved by the logistic regression

model.
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USV DIFFERENCES BETWEEN HAD-1 AND LAD-1 RATS
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Figure 1. 22 — 28 kHz USV acoustic characteristiad HAD-1 vs. LAD-1 rats. Linear mixed
models were used to assess the effect of seldutderling (HAD-1 vs. LAD-1) on the acoustic
characteristics of spontaneously emitted 22 — 28 UBVs.A) Mean Frequency of individual
calls did not differ between HAD-1 and LAD-1 raps=£ 0.303) B) Duration of the calls emitted
by LAD-1 rats was significantly higher than thoseitted by HAD-1 rats (p < 0.0001¢)
Bandwidth of calls did not differ between HAD-1 abéD-1 rats (p = 0.151)D) Power of each

call was significantly different between HAD-1 abdD-1 rats (p<0.0001), though no clear

direction of this effect was observed.
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USV DIFFERENCES BETWEEN HAD-1 AND LAD-1 RATS
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Figure 2. 50 — 55 kHz FM USV acoustic characterigts of HAD-1 vs. LAD-1 rats. Linear
mixed models were used to assess the effect aftseldreeding (HAD-1 vs. LAD-1) on the
acoustic characteristics of spontaneously emit@ed 55 kHz Frequency Modulated USVWs.
Mean Frequency of the calls emitted by HAD-1 rags Wigher than those emitted by the LAD-1
rats (p < 0.0001)B) Duration of the calls emitted by HAD-1 rats wagrsficantly higher than
those emitted by LAD-1 rats (p < 0.000C). Bandwidth of calls made by LAD-1 rats was wider
than those made by HAD-1 rats (p < 0.00@))Power of each call was significantly different

between HAD-1 and LAD-1 rats (p<0.01), though oagain no clear direction of this effect

was observed.
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USV DIFFERENCES BETWEEN HAD-1 AND LAD-1 RATS
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Figure 3. Maximal separation between HAD-1 and LAD1 rats achieved via LDA and

Binomial Logistic Regression Analyses using 22 — 281z and 50 — 55 kHz FM USV data.

A) Linear Discriminant Analysis provided accuratecdimination of 11/12 rats based on 22 — 28
kHz USV data and a complete discrimination of 124t8 based on 50 — 55 kHz FM USV data.
Horizontal line represents the discrimination thied for 22 — 28 kHz calls, vertical line
represents the discrimination threshold for 50 k85 FM calls.B) Binomial Logistic

Regression applied to the complete data set mattieeshaximal separation achieved by the

LDA.
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USV DIFFERENCES BETWEEN HAD-1 AND LAD-1 RATS
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Figure 4. Total alcohol consumption during 4 weeksf 24-hour chronic intermittent
ethanol availability sessions. AHAD-1 rats consumed significantly more alcoholriltilae
LAD-1 rats (p < 0.001)B) Pearson’s correlation analysis revealed an esmalat alcohol intake

over time in HAD-1 rats (r = 0.387, p <0.001), bot in LAD-1 rats (r = -0.153, p = 0.20).
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Highlights

Rats selectively bred for high- and low-alcohol samption can be identified as HAD-1 or LAD-1
rats with high classification accuracy (approx.190%) exclusively on the basis of 22-28 kHz and
50-55 kHz FM USV acoustic characteristics

Acoustic characteristics of 50 — 55 kHz FM and 2ZB-kHz USVs in alcohol-naive HAD-1 and
LAD-1 rats significantly correlate with future alwol consumption

Findings provide novel evidence that USV acoudtiracteristics can be used as biomarkers in

rodents with a predisposition for, or against, esoee alcohol intake



