3,219 research outputs found
The chemistry of Venus' atmosphere
A model for the Venus atmosphere involving photochemistry of oxygen, hydrogen, chlorine and sulfur species is presented. Sulfur reaction schemes and hydrogen and chlorine reaction schemes were included. The impact of sulfur on the oxygen budget and the subsequent production of H2SO4 molecules for the Venus cloud deck were explored. A major new reaction scheme for production of H2SO4 molecules involving sulfur and oxygen chemistry was established shown to dominate over the odd hydrogen scheme proposed earlier. The efficiency of the scheme in formation of H2SO4 is only about 50%, with the remaining sulfur residing in SO2 molecules. The calculated downward flux of H2SO4 may be sufficient to maintain a steady state sulfuric acid cloud if the resident time of H2SO4 droplets in the cloud is as long as a few years. If however, the resident time is half a year or shorter, additional chemistry capable of more efficient conversion of SO2 to SO3 is required
A method of recognition of hand drawn line patterns
Method of recognition of hand drawn line pattern
Heterostructure unipolar spin transistors
We extend the analogy between charge-based bipolar semiconductor electronics
and spin-based unipolar electronics by considering unipolar spin transistors
with different equilibrium spin splittings in the emitter, base, and collector.
The current of base majority spin electrons to the collector limits the
performance of ``homojunction'' unipolar spin transistors, in which the
emitter, base, and collector all are made from the same magnetic material. This
current is very similar in origin to the current of base majority carriers to
the emitter in homojunction bipolar junction transistors. The current in
bipolar junction transistors can be reduced or nearly eliminated through the
use of a wide band gap emitter. We find that the choice of a collector material
with a larger equilibrium spin splitting than the base will similarly improve
the device performance of a unipolar spin transistor. We also find that a
graded variation in the base spin splitting introduces an effective drift field
that accelerates minority carriers through the base towards the collector.Comment: 9 pages, 2 figure
Less is More: Micro-expression Recognition from Video using Apex Frame
Despite recent interest and advances in facial micro-expression research,
there is still plenty room for improvement in terms of micro-expression
recognition. Conventional feature extraction approaches for micro-expression
video consider either the whole video sequence or a part of it, for
representation. However, with the high-speed video capture of micro-expressions
(100-200 fps), are all frames necessary to provide a sufficiently meaningful
representation? Is the luxury of data a bane to accurate recognition? A novel
proposition is presented in this paper, whereby we utilize only two images per
video: the apex frame and the onset frame. The apex frame of a video contains
the highest intensity of expression changes among all frames, while the onset
is the perfect choice of a reference frame with neutral expression. A new
feature extractor, Bi-Weighted Oriented Optical Flow (Bi-WOOF) is proposed to
encode essential expressiveness of the apex frame. We evaluated the proposed
method on five micro-expression databases: CAS(ME), CASME II, SMIC-HS,
SMIC-NIR and SMIC-VIS. Our experiments lend credence to our hypothesis, with
our proposed technique achieving a state-of-the-art F1-score recognition
performance of 61% and 62% in the high frame rate CASME II and SMIC-HS
databases respectively.Comment: 14 pages double-column, author affiliations updated, acknowledgment
of grant support adde
Shockley-Ramo theorem and long-range photocurrent response in gapless materials
Scanning photocurrent maps of gapless materials, such as graphene, often
exhibit complex patterns of hot spots positioned far from current-collecting
contacts. We develop a general framework that helps to explain the unusual
features of the observed patterns, such as the directional effect and the
global character of photoresponse. We show that such a response is captured by
a simple Shockley-Ramo-type approach. We examine specific examples and show
that the photoresponse patterns can serve as a powerful tool to extract
information about symmetry breaking, inhomogeneity, chirality, and other local
characteristics of the system.Comment: 7 pgs, 3 fg
Photochemical modeling of the Antarctic stratosphere: Observational constraints from the airborne Antarctic ozone experiment and implications for ozone behavior
The rapid decrease in O3 column densities observed during Antarctic spring has been attributed to several chemical mechanisms involving nitrogen, bromine, or chlorine species, to dynamical mechanisms, or to a combination of the above. Chlorine-related theories, in particular, predict greatly elevated concentrations of ClO and OClO and suppressed abundances of NO2 below 22 km. The heterogeneous reactions and phase transitions proposed by these theories could also impact the concentrations of HCl, ClNO3 and HNO3 in this region. Observations of the above species have been carried out from the ground by the National Ozone Expedition (NOZE-I, 1986, and NOZE-II, 1987), and from aircrafts by the Airborne Antarctic Ozone Experiment (AAOE) during the austral spring of 1987. Observations of aerosol concentrations, size distribution and backscattering ratio from AAOE, and of aerosol extinction coefficients from the SAM-II satellite can also be used to deduce the altitude and temporal behavior of surfaces which catalyze heterogeneous mechanisms. All these observations provide important constraints on the photochemical processes suggested for the spring Antarctic stratosphere. Results are presented for the concentrations and time development of key trace gases in the Antarctic stratosphere, utilizing the AER photochemical model. This model includes complete gas-phase photochemistry, as well as heterogeneous reactions. Heterogeneous chemistry is parameterized in terms of surface concentrations of aerosols, collision frequencies between gas molecules and aerosol surfaces, concentrations of HCl/H2O in the frozen particles, and probability of reaction per collision (gamma). Values of gamma are taken from the latest laboratory measurements. The heterogeneous chemistry and phase transitions are assumed to occur between 12 and 22 km. The behavior of trace species at higher altitudes is calculated by the AER 2-D model without heterogeneous chemistry. Calculations are performed for solar illumination conditions typical of 60, 70, and 80 S, from July 15 to October 31
- …