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We extend the analogy between charge-based bipolar semiconductor electronics and spin-based
unipolar electronics by considering unipolar spin transistors with different equilibrium spin
splittings in the emitter, base, and collector. The current of base majority spin electrons to the
collector limits the performance of “homojunction” unipolar spin transistors, in which the emitter,
base, and collector are all made from the same magnetic material. This current is very similar in
origin to the current of base majority carriers to the emitter in homojunction bipolar junction
transistors. The current in bipolar junction transistors can be reduced or nearly eliminated through
the use of a wide band-gap emitter. We find that the choice of a collector material with a larger
equilibrium spin splitting than the base will similarly improve the device performance of a unipolar
spin transistor. We also find that a graded variation in the base spin splitting introduces an effective
drift field that accelerates minority carriers through the base towards the collector. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1886267g

I. INTRODUCTION

Semiconductor spin electronics provides the promise of
integrating the nonvolatility of metallic magnetoelectronics
with the gain properties of semiconductor charge
electronics.1,2 Semiconductor spin analogs of field effect
transistorssspin-FET’s3–8d and junction transistors9–12 have
been proposed, although the desired material properties
needed for these devices have yet to be demonstrated. Rapid
progress is underway, however, both in the discovery of new
ferromagnetic semiconductor materials13–15 and in the im-
provement of the Curie temperatures of already known fer-
romagnetic semiconductors.16–18 Thus continued effort is
warranted to further develop and improve device designs
based on such materials.

In recent work9 we emphasized an analogy between
spin-based unipolar junction electronics and bipolar charge
electronics. In spin-based unipolar electronics the spin-up
and spin-down carriers from a single band play the role of
majority and minority carriers ordinarily taken by conduction
electrons and valence holes in bipolar devices. The building-
block spin device in this approach is the spin diode,9 in
which two similarly doped semiconductor regions of oppo-
site magnetization are placed in electrical contact; this situ-
ation naturally forms at a 180° domain wall. In this spin
diode, majoritysminorityd carriers on one side of the device
are spin-downsspin-upd electrons and on the other side of
the device are spin-upsspin-downd electrons. Under bias the
charge current is not rectified, but the spin current is. When
two such devices are placed back-to-back in a transistor ge-
ometry, they amplify charge current in a similar way to bi-
polar junction transistors. The schematic unipolar spin tran-
sistor geometry is shown in Fig. 1. ForDE=DB=DC this

diagram is the same as Fig. 2 of Ref. 9. Such devices can
play a role in the design of reprogrammable logic elements,
magnetic sensing, and nonvolatile memorysas suggested in
Ref. 9d, and as differential spin current amplifiers.19 Here we
show that the use of aDC.DB improves the spin polariza-
tion of the collector current, the transconductance, and the
output conductance of the unipolar spin transistor. In so do-
ing it is also possible to consider larger base dopings to re-
duce the base resistance and also the base-width dependence
on voltagesthe Early effect20,21d. We further find that the use
of a graded spin splitting in the base can accelerate minority
carriers through the base towards the collector, which im-
proves both the gain and the switching speed.

II. HETEROSTRUCTURE UNIPOLAR SPIN
TRANSISTORS

The equations governing the emitter, base, and collector
currents of these transistors are similar to those governing
bipolar transistors. The collector current is

IC = −
AqJoB

sinhsW/LBd
fse−qVEB/kT − 1d

− se−qVCB/kT − 1dcoshsW/LBdg − AqJoCfeqVCB/kT − 1g

s1d

and the emitter current is

IE = −
AqJoB

sinhsW/LBd
fse−qVEB/kT − 1dcoshsW/LBd

− se−qVCB/kT − 1dg + AqJoEfeqVEB/kT − 1g. s2d

The base width isW, the emitter and collector areas areA, k
is Boltzmann’s constant,q is the magnitude of the electron
charge, andT is the temperature.JoB=DBnmB/LB, whereDB
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is the diffusion constant in the base,nmB is the equilibrium
minority spin carrier density in the base, andLB is the mi-
nority spin diffusion length in the base.JoE andJoC are de-
fined similarly using the appropriate quantities for the emit-
ter and collector, respectively. The voltage between emitter
and base isVEB,0, and the voltage between collector and
base isVCB.0. The base current isIB= IE− IC sthis is the
convention for common-base amplifiersd. When W/LB is
small, IB! IC, which is the desired situation for transistor
operationscurrent gainIC/ IB@1d. These equations were re-
ported in Ref. 9 for the base, emitter, and collector, all con-
structed from the same material with the same dopingsJoE

=JoB=JoCd.
Except for the different base, emitter, and collector pa-

rameters, the assumptions underlying Eqs.s1d ands2d remain
the same as in Ref. 9. We assume that a negligible number of
carriers flip their spin as they move across the junctions from
emitter to base, or from base to emitter. This is similar to the
assumption that the recombination current in bipolar transis-
tors can be neglected in the depletion regions, and is essen-
tial for the bulk of the voltage drop to occur across the junc-
tion regions. Detailed calculations of spin transport
properties across these magnetic interfaces indicate that the
no-spin-flip condition can be met.22,23 We also assume9 that
the Boltzmann approximation for transport is valid, that the
minority carrier densities are small compared to majority car-
rier densities, and that no generation currents exist in the
junction regions. We assume the operation temperature is
sufficient to thermally excite minority carriers, but not so
high that the junction is shorted by excessive conductivity
from those carriers. These are similar assumptions to those
underlying common bipolar transistors.

We now take a closer look at the transport of carriers of
both spin directions through the device. Transport processes
involved in the movement of spin-down carriers from the
emitter to the collector behave nearly identically to those
involved in the motion of electrons from the emitter to the
collector in n-p-n bipolar transistors. For both the bipolar
junction transistors and the unipolar spin transistors, how-
ever, there are also transport processes involving the other
species of carrier which can limit the performance of these
transistors. In ap-n junction under forward bias the barriers
for minority carrier injection of electrons into thep region

and for minority carrier injection of holes into then region
are both reduced, and under reverse bias they are both in-
creased. Thus the problematic junction for bipolar transistors
is the forward-biased emitter-base junction, which can permit
base majority carriers to be injected at high concentration
into the emitter. This also makes it problematic to dope the
base layer highly; high base doping would otherwise be de-
sirable, for it can reduce the base resistance and also the
Early effect.20,21 The introduction of a wide band-gap
emitter24,25 can be used to keep the barrier high for injection
of base majority carriers into the emitter. In a unipolar spin
diode, however, the two types of carriers have the same
charge. Thus a bias which reduces the barrier for spin-down
electrons to move in one direction will increase the barrier
for spin-up electrons to move the other way.9 If the emitter
chemical potential in a unipolar spin transistor increases,
then the barrier for spin-down electrons to move from the
emitter to the base is reduced, and in contrast to the case for
bipolar transistors, the barrier for the spin-up electrons to
move from the base to the emitter isincreased. The problem-
atic junction for unipolar spin transistors, therefore, is not the
base-emitter junction. Instead it is the base-collector junc-
tion, where an increasing barrier for spin-down electrons to
move from the collector to the base implies a decreasing
barrier for spin-up electrons to move from the base to the
collector. This effect manifests in an unusual “collector mul-
tiplication factor” M, defined as the ratio between the full
collector currentIC and the majority spin-direction charge
currentIC↓.

9,21 For a homojunction unipolar spin transistor

M = 1 + sinhsW/LBdeqfVCB+VEBg/kT, s3d

and is close to 1 only ifW/L is small andVEB+VCB,0.
Thus unlike a bipolar transistor, whereuVEBu is kept small to
reduce base majority current into the emitter, anduVCBu is
typically largesbut under the avalanche thresholdd, the uni-
polar spin transistor operates bettersM ,1d if uVEBu is large
and uVCBu is small.

The solution to the current of majority base carriers to
the emitter in the bipolar transistor suggests an approach to
limit the undesirable spin-up current from the base to the
collector in a unipolar spin transistor. This is to introduce a
collector with a larger spin splitting than in the base. In such
a heterojunction unipolar spin transistor

M = 1 + sJoC/JoBdsinhsW/LBdeqfVCB+VEBg/kT. s4d

The new factorJoC/JoB depends simply on the spin splittings
throughnmC/nmB. Thus

M = 1 +e−sDC−DBd/kTsDCLB/DBLCdsinhsW/LBd

3eqfVCB+VEBg/kT. s5d

If DC exceedsDB by severalkT more thanqsVCB+VEBd, then
M can be nearly unity, corresponding to an almost entirely
spin-polarized collector current of spin-down carriers.

III. SMALL-SIGNAL PROPERTIES

A very recent analysis of homojunction unipolar spin
transistors26 has suggested that the output conductance and
reverse feedback conductance may be high relative to bipolar

FIG. 1. Band-edge diagram for a heterostructure unipolar transistor with a
wide spin splitting collector. The spin splitting of the emitter isDE, the base
is DB, and the collector isDC. The band edges are shown forDC.DB, which
is a good choice to reduce the spin-up current from the base to the collector.
The solid lines are the band edges for spin-down carriers and the dashed
lines are the band edges for spin-up carriers. The dotted lines indicate the
chemical potential in each region.
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junction transistors; this is a consequence of the larger prob-
ability for base majority carriers to enter the collector in
unipolar spin transistors than in bipolar junction transistors.
This analysis, when applied to heterostructure unipolar spin
transistors, yields the following results for the small-signal27

properties. The transconductance

gm = U ]IC

]VEB
U

VEC

=
Aq2JoB

kTsinhsW/LBd
f1 − coshsW/LBd

3eqVEC/kTge−qVEB/kT −
Aq2JoC

kT
eqVCB/kT

,
Aq2JoB

kTsinhsW/LBd
e−qVEB/kT

−
Aq2JoC

kT
eqVCB/kT. s6d

As −qVEC@kT, the quantity in the square brackets can be
approximated as unity, leading to the final approximate ex-
pression. Note that the current of base majority carriers to the
collector directly reduces the transconductance of the unipo-
lar spin transistor. The output conductance

go = U ]IC

]VEC
U

VEB

=
Aq2JoC

kT
eqVCB/kT

+
Aq2JoB

kT
cothsW/LBde−qVCB/kT

,
Aq2JoC

kT
eqVCB/kT, s7d

and the reverse feedback conductance

gm = U ]IB

]VEC
U

VEB

= −
Aq2JoC

kT
eqVCB/kT

+
Aq2JoBf1 − coshsW/LBdg

kTsinhsW/LBd
e−qVCB/kT

, −
Aq2JoC

kT
eqVCB/kT. s8d

As qVCB@kT, terms dependent on exps−qVCB/kTd are ne-
glected in the final approximate result. The input conduc-
tance isgp+gm, where

gp = U ]IB

]VEB
U

VEC

=
Aq2JoBfcoshsW/LBd − 1g

kTsinhsW/LBd

3f1 + eqVEC/kTge−qVEB/kT

+
Aq2JoC

kT
eqVCB/kT +

Aq2JoE

kT
eqVEB/kT

,
Aq2JoBfcoshsW/LBd − 1g

kTsinhsW/LBd
e−qVEB/kT

+
Aq2JoC

kT
eqVCB/kT. s9d

In addition to the prior constraint onVEC, optimal operation
requires −qVEB@kT, as shown schematically in Fig. 1. As-

suming expsqVEC/kTd!1 and expsqVEB/kTd!1 leads to the
approximate result forgp. In the heterostructure unipolar
spin transistor, the quantities which ideally should be large
sgm andgpd have terms proportional toJoB, and those which
should be smallsgo and gmd, are only proportional toJoC.
Hence we can dramatically improve the device performance
by takingJoC/JoB→0. As we found above

JoC/JoB ~ noC/noB , e−sDC−DBd/kT. s10d

Thus the choice of a collector region spin splitting that ex-
ceeds the base region spin splitting by manykT will signifi-
cantly reduce the undesirable conductances associated with
the homojunction unipolar spin transistor.

IV. CONCLUDING REMARKS

We also mention briefly another beneficial design strat-
egy for the heterostructure unipolar spin transistor motivated
by proposals for base band-gap grading in heterostructure
bipolar transistors24,25—to grade the spin splitting through
the base. As shown in Fig. 2 the resulting quasielectric field
will accelerate the spin-down carriers through the base to-
wards the collector. The grading naturally places the smallest
spin splitting on the side of the base nearest the collector.
This will enhance the effect of the wide spin splitting collec-
tor on reducing the base majority spin current to the collec-
tor. The situation here is different from the bipolar transistor,
where the widest-gap region of the base is near the emitter,
requiring the use of an even wider-gap material for the emit-
ter region. Analytic expressions for the transistor currents are
no longer straightforward with the graded base, but the ben-
efit to transistor performance is clear. Faster minority carrier
transport through the base increases gain and decreases
switching speed.21

The device performance advantages of using a hetero-
structure unipolar spin transistor over a homojunction unipo-
lar spin transistor are another example of the analogy be-
tween unipolar spin electronics and bipolar charge
electronics emphasized in Ref. 9. As the two carrier species
for unipolar spin transistors have the same charge, the device
region which should be modified to improve performance is
the collector, not the emitter. Grading of the spin splitting in

FIG. 2. Band-edge diagram for the heterostructure unipolar transistor with a
graded base. Solid lines are the band-edges for spin-down carriers and
dashed lines are the band-edges for spin-up carriers. The dotted lines indi-
cate the chemical potential in each region. The gradedDB in the base pro-
duces an effective quasielectric field that accelerates the spin-down minority
carriers in the base towards the collector. It also is easier to combine the
graded base of the unipolar spin transistor with the wide spin splitting col-
lector because the narrowest splitting of the base occurs at the interface with
the collector.
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the base region also will enhance minority carrier transport
through the base. We note that these modifications to the spin
splitting in the transistor configuration do not affect the al-
ternatesshortedd configuration of the transistor, in which the
emitter, base, and collector magnetization are all parallel.
Here the spatial variation of the energy of the minority spin
band is irrelevant, as the current will be carried entirely by
the majority carriers. Realization of a graded spin splitting
might be possible by grading the concentration of magnetic
dopants in a dilute magnetic semiconductor system such as
GaMnAs; in thissand many otherd materials the Curie tem-
peraturesand thus likely the spin splittingd depends on the
Mn concentration.
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