3,027 research outputs found

    A model for long-term climatic effects of impacts

    Get PDF
    We simulated climatic changes following the impacts of asteroids of different sizes on the present surface of Earth. These changes are assumed to be due to the variations of the radiation energy budget as determined by the amount of dust globally distributed in the atmosphere following the impact. A dust evolution model is used to determine the dust particle size spectra as a function of time and atmospheric altitude. We simulate radiation transfer through the dust layer using a multiple scattering calculation scheme and couple the radiative fluxes to an ocean circulation model in order to determine climatic changes and deviations over 2000 years following the impact. Resulting drops in sea surface temperatures are of the order of several degrees at the equator and decrease toward the poles, which is deduced from the increasing importance of infrared insulation of the dust cover at high latitudes. While gravitational settling reduces the atmospheric amount of dust significantly within 6 months, temperature changes remain present for roughly 1 year irrespective of impactor size. Below 1000 m ocean depth, these changes are small, and we do not observe significant modifications in the structure of the ocean circulation pattern. For bodies smaller than 3 km in diameter, climatic effects increase with impactor size. Beyond this threshold, there is enough dust in the atmosphere to block almost completely solar radiation; thus additional dust does not enhance climatic deviations anymore. In fact, owing to interaction in the infrared, we even observe smaller effects by going from a 5 km impactor to larger diameters

    EQUATIONS OF STATE FOR FINITE NUCLEAR SYSTEMS

    Get PDF

    FRAGMENT FLOW, IN-MEDIUM EFFECTS AND THE NUCLEAR-EQUATION OF STATE

    Get PDF

    Regulations & exemptions during the COVID-19 pandemic for new medical technology, health services & data

    Get PDF
    The rapid evolution of the COVID-19 pandemic has sparked a large unmet need for new or additional medical technology and healthcare services to be made available urgently. Healthcare, Academic, Government and Industry organizations and individuals have risen to this challenge by designing, developing, manufacturing or implementing innovation. However, both they and healthcare stakeholders are hampered as it is unclear how to introduce and deploy the products of this innovation quickly and legally within the healthcare system. Our paper outlines the key regulations and processes innovators need to comply with, and how these change during a public health emergency via dedicated exemptions. Our work includes references to the formal documents regarding UK healthcare regulation and governance, and is meant to serve as a guide for those who wish to act quickly but are uncertain of the legal and regulatory pathways that allow new a device or service to be fast-tracked

    Microbial Morphology and Motility as Biosignatures for Outer Planet Missions

    Get PDF
    Meaningful motion is an unambiguous biosignature, but because life in the Solar System is most likely to be microbial, the question is whether such motion may be detected effectively on the micrometer scale. Recent results on microbial motility in various Earth environments have provided insight into the physics and biology that determine whether and how microorganisms as small as bacteria and archaea swim, under which conditions, and at which speeds. These discoveries have not yet been reviewed in an astrobiological context. This paper discusses these findings in the context of Earth analog environments and environments expected to be encountered in the outer Solar System, particularly the jovian and saturnian moons. We also review the imaging technologies capable of recording motility of submicrometer-sized organisms and discuss how an instrument would interface with several types of sample-collection strategies
    • …
    corecore