490 research outputs found

    Ground--state energies and widths of 5^5He and 5^5Li

    Full text link
    We extract energies and widths of the ground states of 5^5He and 5^5Li from recent single--level R--matrix fits to the spectra of the 3^3H(d,γ({\rm d},\gamma)5^5He and the 3^3He(d,γ({\rm d},\gamma)5^5Li reactions. The widths obtained differ significantly from the formal R--matrix values but they are close to those measured as full widths at half maxima of the spectra in various experiments. The energies are somewhat lower than those given by usual estimates of the peak positions. The extracted values are close to the S--matrix poles calculated previously from the multi--term analyses of the N-4^4He elastic scattering data.Comment: 3 pages, no figures, uses revtex.sty, accepted for publication in PRC, uuencoded postscript and tex-files available at ftp://is1.kph.tuwien.ac.at/pub/ohu/fwidth.u

    E2 properties of nuclei far from stability and the proton-halo problem of 8B

    Full text link
    E2 properties of A=6--10 nuclei, including those of nuclei far from stability, are studied by a (0+2)ω(0+2)\hbar\omega shell-model calculation which includes E2 core-polarization effects explicitly. The quadrupole moments and the E2 transition strengths in A=6--10 nuclei are described quite well by the present calculation. This result indicates that the relatively large value of the quadrupole moment of 8^8B can be understood without introducing the proton-halo in 8^8B. An interesting effect of the 2ω2\hbar\omega core-polarization is found for effective charges used in the 0ω0\hbar\omega shell model; although isoscalar effective-charges are almost constant as a function of nucleus, appreciable variations are needed for isovector effective-charges which play important roles in nuclei with high isospin-values.Comment: (LaTeX, 23 pages

    Isospin Effects in Nuclear Multifragmentation

    Full text link
    We develop an improved Statistical Multifragmentation Model that provides the capability to calculate calorimetric and isotopic observables with precision. With this new model we examine the influence of nuclear isospin on the fragment elemental and isotopic distributions. We show that the proposed improvements on the model are essential for studying isospin effects in nuclear multifragmentation. In particular, these calculations show that accurate comparisons to experimental data require that the nuclear masses, free energies and secondary decay must be handled with higher precision than many current models accord.Comment: 46 pages, 16 figure

    Triple collisions (e+p+Be7) in solar plasma

    Full text link
    Several nuclear reactions involving the Be7 nucleus, not included into the standard model of the pp-chain, are discussed. A qualitative analysis of their possible influence on the fate of the Be7 in solar plasma and of their role in the interpretation of the solar neutrino experiments is given. As an example, the reaction rate of the nonradiative production of B8 in the triple collision p + e^- + Be7 ---> B8 + e^- is estimated in the framework of the adiabatic approximation. For the solar interior conditions the triple collision reaction rate is approximately 10^{-4} of that for the binary process p + Be7 ---> B8 + gamma .Comment: RevTeX, 15 pages, submitted to Nucl.Phys.

    4He decay of excited states in 14C

    Full text link
    A study of the 7Li(9Be,4He 10Be)2H reaction at E{beam}=70 MeV has been performed using resonant particle spectroscopy techniques and provides the first measurements of alpha-decaying states in 14C. Excited states are observed at 14.7, 15.5, 16.4, 18.5, 19.8, 20.6, 21.4, 22.4 and 24.0 MeV. The experimental technique was able to resolve decays to the various particle bound states in 10Be, and provides evidence for the preferential decay of the high energy excited states into states in 10Be at ~6 MeV. The decay processes are used to indicate the possible cluster structure of the 14C excited states.Comment: accepted for publication in PR

    Alpha particle production by molecular single-particle effect in reactions of 9^{9}Be just above the Coulomb barrier

    Full text link
    The α\alpha -particle production in the dissociation of 9^{9}Be on 209^{209}Bi and 64^{64}Zn at energies just above the Coulomb barrier is studied within the two-center shell model approach. The dissociation of 9^{9}Be on 209^{209}Bi is caused by a molecular single-particle effect (Landau-Zener mechanism) before the nuclei reach the Coulomb barrier. Molecular single-particle effects do not occur at that stage of the collision for 9^{9}Be+64^{64}Zn, and this explains the absence of fusion suppression observed for this system. The polarisation of the energy level of the last neutron of 9^{9}Be and, therefore the existence of avoided crossings with that level, depends on the structure of the target.Comment: 5 pages, 4 figure

    Shift of the 21+^+_1 state of 10^{10}Be in the ternary cold fission of 252^{252}Cf

    Full text link
    Recent experimental data indicate that in the ternary cold fission of 252^{252}Cf the energy of the first excited state of the accompanying light cluster 10^{10}Be is decreased by an amount ranging between \approx 6 and 26 keV. A model is proposed to calculate the shift of the vibrational 21+^+_1 state in 10^{10}Be when its heavy companions are the even-even nuclei 146^{146}Ba and 96^{96}Sr. The stiffness parameters of the β\beta-vibrations are calculated within the self-consistent Hartree-Fock method with BCS pairing correlations taken into account, and its change is determined by the interaction of the light cluster with the heavy fragments. The results are pointing to a dependence of the shift magnitude and signature on the relative distance between the three clusters and their mutual orientation. Eventually it is the anharmonic perturbation of the spherical vibrator which is responsible for obtaining a negative energy shift of the 21+^+_1 state.Comment: 4 pages, 3 figure

    Perturbation of a lattice spectral band by a nearby resonance

    Full text link
    A soluble model of weakly coupled "molecular" and "nuclear" Hamiltonians is studied in order to exhibit explicitly the mechanism leading to the enhancement of fusion probability in case of a narrow near-threshold nuclear resonance. We, further, consider molecular cells of this type being arranged in lattice structures. It is shown that if the real part of the narrow nuclear resonance lies within the molecular band generated by the intercellular interaction, an enhancement, proportional to the inverse width of the nuclear resonance, is to be expected.Comment: RevTeX, 2 figures within the file. In May 2000 the title changed and some minor corrections have been don

    Reaction rates for Neutron Capture Reactions to C-, N- and O-isotopes to the neutron rich side of stability

    Get PDF
    The reaction rates of neutron capture reactions on light nuclei are important for reliably simulating nucleosynthesis in a variety of stellar scenarios. Neutron capture reaction rates on neutron-rich C-, N-, and O-isotopes are calculated in the framework of a hybrid compound and direct capture model. The results are tabulated and compared with the results of previous calculations as well as with experimental results.Comment: 33 pages (uses revtex) and 9 postscript figures, accepted for publication in Phys. Rev.

    The high-lying 6^6Li levels at excitation energy around 21 MeV

    Get PDF
    The 3^3H+3^3He cluster structure in 6^6Li was investigated by the 3^3H(α\alpha,3^3H 3^3He)n kinematically complete experiment at the incident energy EαE_\alpha = 67.2 MeV. We have observed two resonances at ExE_x^* = 21.30 and 21.90 MeV which are consistent with the 3^3He(3^3H, γ\gamma)6^6Li analysis in the Ajzenberg-Selove compilation. Our data are compared with the previous experimental data and the RGM and CSRGM calculations.Comment: 12 pages, 6 figures. Accepted for publication in J. Phys. Soc. Jp
    corecore