1,565 research outputs found

    CIS-lunar space infrastructure lunar technologies: Executive summary

    Get PDF
    Technologies necessary for the creation of a cis-Lunar infrastructure, namely: (1) automation and robotics; (2) life support systems; (3) fluid management; (4) propulsion; and (5) rotating technologies, are explored. The technological focal point is on the development of automated and robotic systems for the implementation of a Lunar Oasis produced by Automation and Robotics (LOAR). Under direction from the NASA Office of Exploration, automation and robotics were extensively utilized as an initiating stage in the return to the Moon. A pair of autonomous rovers, modular in design and built from interchangeable and specialized components, is proposed. Utilizing a buddy system, these rovers will be able to support each other and to enhance their individual capabilities. One rover primarily explores and maps while the second rover tests the feasibility of various materials-processing techniques. The automated missions emphasize availability and potential uses of Lunar resources, and the deployment and operations of the LOAR program. An experimental bio-volume is put into place as the precursor to a Lunar environmentally controlled life support system. The bio-volume will determine the reproduction, growth and production characteristics of various life forms housed on the Lunar surface. Physicochemical regenerative technologies and stored resources will be used to buffer biological disturbances of the bio-volume environment. The in situ Lunar resources will be both tested and used within this bio-volume. Second phase development on the Lunar surface calls for manned operations. Repairs and re-configuration of the initial framework will ensue. An autonomously-initiated manned Lunar oasis can become an essential component of the United States space program

    Observations of the Io plasma torus

    Get PDF
    The short wavelength spectrography on the IUE satellite was used to obtain spectra of the plasma torus near the orbit of Io about Jupiter. Three exposures of about 8 hours each taken in March and May 1979 show emission features due to SII, SIII, and OIII. The absence of features at other wavelengths permits upper limits to be other species in the torus

    Observations of polar aurora on Jupiter

    Get PDF
    North-south spatial maps of Jupiter were obtained with the SWP camera in IUE observations of 10 December 1978, 19 May 1979, and 7 June 1979. Bright auroral emissions were detected from the north and south polar regions at H Ly alpha (1216 A) and in the H2 Lyman bands (1250-1608 A) on 19 May 1979; yet no enhanced polar emission was detected on the other days. The relationship between the IUE observing geometry and the geometry of the Jovian magnetosphere is discussed

    HUT observations of carbon monoxide in the coma of Comet Levy (1990c)

    Get PDF
    Observations of comet Levy (1990c) were made with the Hopkins Ultraviolet Telescope during the Astro-1 Space Shuttle mission on 10 Dec. 1990. The spectrum, covering the wavelength range 415 to 1850 A at a spectral emission of 3 A (in first order), shows the presence of carbon monoxide and atomic hydrogen, carbon, and sulfur in the coma. Aside from H I Lyman-beta, no cometary features are detected below 1200 A, although cometary O I and O II would be masked by the same emissions present in the day airglow spectrum. The 9.4 x 116 arcsec aperture corresponds to 12,000 x 148,000 km at the comet. The derived production rate of CO relative to water, 0.13 + or - 0.02, compared with the same ratio derived from IUE observations (made in Sep. 1990) which sample a much smaller region of the coma, 0.04 + or - 0.01, suggests the presence of an extended source of CO, as was found in comet Halley. Upper limits on Ne and Ar abundance are within an order of magnitude or solar abundances

    A Study of the Reionization History of Intergalactic Helium with FUSE and VLT

    Full text link
    We obtained high-resolution VLT and FUSE spectra of the quasar HE2347-4342 to study the properties of the intergalactic medium between redshifts z=2.0-2.9. The high-quality optical spectrum allows us to identify approximately 850 HeII absorption components with column densities between N~5X10^11 and $ 10^18 cm^-2. The reprocessed FUSE spectrum extends the wavelength coverage of the HeII absorption down to an observed wavelength of 920 A. Approximately 1400 HeII absorption components are identified, including 917 HeII Ly-alpha systems and some of their HeII Ly-beta, Ly-gamma, and Ly-delta counterparts. The ionization structure of HeII is complex, with approximately 90 components that are not detected in the hydrogen spectrum. These components may represent the effect of soft ionizing sources. The ratio Eta=N(HeII)/N(HI) varies approximately from unity to more than a thousand, with a median value of 62 and a distribution consistent with the intrinsic spectral indices of quasars. This suggests that the dominant ionizing field is from the accumulated quasar radiation, with contributions from other soft sources such as star-forming regions and obscured AGN, which do not ionize helium. We find an evolution in Eta toward smaller values at lower redshift, with the gradual disappearance of soft components. At redshifts z>2.7, the large but finite increase in the HeII opacity, Tau=5+/-1, suggests that we are viewing the end stages of a reionization process that began at an earlier epoch. Fits of the absorption profiles of unblended lines indicate comparable velocities between hydrogen and He^+ ions. At hydrogen column densities N<3X10^12 cm^-2 the number of forest lines shows a significant deficit relative to a power law, and becomes negligible below N=10^11 cm^-2.Comment: 40 pages, 10 Postscript figures, uses Aastex.sty The Astrophysical Journal, in pres
    corecore