66 research outputs found

    Computer program to generate attitude error equations for a gimballed platform

    Get PDF
    Computer program for solving attitude error equations related to gimballed platform is described. Program generates matrix elements of attitude error equations when initial matrices and trigonometric identities have been defined. Program is written for IBM 360 computer

    MU Biodesign and Innovation Program

    Get PDF
    Jump Starting Technologies, Patent Issues, & Translational Medicine Poster SessionThe MU Biodesign and Innovation Program (MUBIP) centers its efforts off two tiers: (1) formal educational training through a biodesign and innovation fellowship and (2) interdisciplinary faculty collaboration. The Department of Surgery and College of Engineering on the University of Missouri campus in Columbia recognizes the growing need to improve patient care and desire to impact this arena through the collaborative development of MUBIP. MUBIP goals are to successfully bring new medical technologies and health care solutions into the market while producing high quality innovative professionals with the desire and knowledge to continue producing new medical technologies within our program, the University of Missouri, MU Biodesign affiliates, corporations or through the establishment of new companies resulting in economic gains. Formal Educational Training: The education tier is focused primarily on the fellowship. The experience simulates, in a compressed one-year timeframe, the phases of a start-up medical device company. The fellowship consists of a three member team including a surgeon, engineering with at least a masters degree, and business professional with a MBA. The fellowship team start date is July 1 and ends June 30. The fellowship year structure is divided into three phases that provide observation and hands-on experience in clinical, engineering and business environments. Phase 1 is clinical immersion; Phase 2 engineering design and development, finishing with Phase 3, business practices. Each phase is approximately 4 months with overlap throughout the year. In addition to observation and hands on training in each phase the fellows attend lectures related to the biodesign process, surgery, engineering and business. Lectures are presented by faculty from the Department of Surgery, College of Engineering, entrepreneurs, angel fund investors, venture capitalists, industry leaders, founders from start up companies, and other successful biodesign related individuals from the community and nationwide. Faculty, staff, residents and students are welcome to attend these lectures. Interdisciplinary Faculty Collaborations: Interdisciplinary faculty collaboration is the other tier of MUBIP. MUBIP goal is to facilitate collaboration between faculty within the University of Missouri Campus through interdisciplinary research and education. With the MUBIP mission focused to improve health care through invention and implementation of new medical technologies, we believe this can be accomplish through MUBIP guidance and support from the faculty members collaborating to build on existing relationships and form new relationships to invent innovative medical technologies. Conclusion: MU Biodesign & Innovation Program is a new innovative way to grow, build and promote new medical technologies to improve patient care. The education is a novel way to help surgeons, engineers and business people learn the process from napkin to market and prepare them for a future in medical device development. This program has the ability to impact future patient care with a generation of knowledgeable successful inventors. Collaboration is a key factor to continue improving patient care. Technologies, research and knowledge continue to grow; however, to maximize the potential of new inventions and improve patient care, it is crucial to bring engineers and surgeons together to be leaders in today's changing world

    NeXSPheRIO results on azimuthal anisotropy in Au-Au collisions at 200A GeV

    Full text link
    In this work, we present the results obtained by the hydrodynamic code NeXSPheRIO on anisotropic flows. In our calculation, we made use of event-by-event fluctuating initial conditions, and chemical freeze-out was explicitly implemented. We studied directed flow, elliptic flow and forth harmonic coefficient for various hadrons at different centrality windows for Au+Au collisions at 200 AGeV. The results are discussed and compared with experimental data from RHIC.Comment: 6 pages and 6 figures, sqm2008 contributio

    Targeting mitochondrial 18 kDa translocator protein (TSPO) regulates macrophage cholesterol efflux and lipid phenotype

    Get PDF
    Abstract The aim of the present study was to establish mitochondrial cholesterol trafficking 18 kDa translocator protein (TSPO) as a potential therapeutic target, capable of increasing macrophage cholesterol efflux to (apo)lipoprotein acceptors. Expression and activity of TSPO in human (THP-1) macrophages were manipulated genetically and by the use of selective TSPO ligands

    Influence of gold nanoparticles on collagen fibril morphology quantified using transmission electron microscopy and image analysis

    Get PDF
    BACKGROUND: Development of implantable biosensors for disease detection is challenging because of poor biocompatibility of synthetic materials. A possible solution involves engineering interface materials that promote selfassembly and adhesion of autologous cells on sensor surfaces. Crosslinked type-I collagen is an acceptable material for developing engineered basement membranes. In this study, we used functionalized gold nanoparticles as the crosslinking agent. Functionalized nanoparticles provide sites for crosslinking collagen as well as sites to deliver signaling compounds that direct selfassembly and reduce inflammation. The goal of this study was to obtain a quantitative parameter to objectively determine the presence of crosslinks. METHODS: We analyzed TEM images of collagen fibrils by two methods: Run length analysis and topology analysis after medial axis transform. RESULTS: Run length analysis showed a significant reduction of the interfibril spaces in the presence of nanoparticles (change of 40%, P < 0.05), whereas the fibril thickness remained unchanged. In the topological network, the number of elements, number of branches and number of sides increased significantly in the presence of nanoparticles (P < 0.05). Other parameters, especially the number of loops showed only a minimal and nonsignificant change. We chose a ratiometric parameter of the number of branches normalized by the number of loops to achieve independence from gross fibril density. This parameter is lower by a factor of 2.8 in the presence of nanoparticles (P < 0.05). CONCLUSION: The numerical parameters presented herein allow not only to quantify fibril mesh complexity and crosslinking, but also to help quantitatively compare cell growth and adhesion on collagen matrices of different degree of crosslinking in further studies

    Prostaglandin F2-alpha receptor (FPr) expression on porcine corpus luteum microvascular endothelial cells (pCL-MVECs)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The corpus luteum (CL) is a transient endocrine gland and prostaglandin F2-alpha is considered to be the principal luteolysin in pigs. In this species, the in vivo administration of prostaglandin F2-alpha induces apoptosis in large vessels as early as 6 hours after administration. The presence of the prostaglandin F2-alpha receptor (FPr) on the microvascular endothelial cells (pCL-MVECs) of the porcine corpus luteum has not yet been defined. The aim of the study was to assess FPr expression in pCL-MVECs in the early and mid-luteal phases (EL-p, ML-p), and during pregnancy (P-p). Moreover, the effectiveness of prostaglandin F2-alpha treatment in inducing pCL-MVEC apoptosis was tested.</p> <p>Methods</p> <p>Porcine CLs were collected in the EL and ML phases and during P-p. All CLs from each animal were minced together and the homogenates underwent enzymatic digestion. The pCL-MVECs were then positively selected by an immunomagnetic separation protocol using Dynabeads coated with anti-CD31 monoclonal antibody and seeded in flasks in the presence of EGM 2-MV (Microvascular Endothelial Cell Medium-2). After 4 days of culture, the cells underwent additional immunomagnetic selection and were seeded in flasks until the confluent stage.</p> <p>PCR Real time, western blot and immunodetection assays were utilized to assess the presence of FPr on pCL-MVEC primary cultures. Furthermore, the influence of culture time (freshly isolated, cultured overnight and at confluence) and hormonal treatment (P4 and E2) on FPr expression in pCL-MVECs was also investigated. Apoptosis was detected by TUNEL assay of pCL-MVECs exposed to prostaglandin F2-alpha.</p> <p>Results</p> <p>We obtained primary cultures of pCL-MVECs from all animals. FPr mRNA and protein levels showed the highest value (ANOVA) in CL-MVECs derived from the early-luteal phase. Moreover, freshly isolated MVECs showed a higher FPr mRNA value than those cultured overnight and confluent cells (ANOVA). prostaglandin F2-alpha treatment failed to induce an apoptotic response in all the pCL-MVEC cultures.</p> <p>Conclusion</p> <p>Our data showing the presence of FPr on MVECs and the inability of prostaglandin F2-alpha to evoke an in vitro apoptotic response suggest that other molecules or mechanisms must be considered in order to explain the in vivo direct pro-apoptotic effect of prostaglandin F2-alpha at the endothelial level.</p

    Selective Self-Locking Actuator and Control Allocation Approach for Thermal Load Minimization

    No full text
    • …
    corecore