281 research outputs found

    Studying Cortical Plasticity in Ophthalmic and Neurological Disorders:From Stimulus-Driven to Cortical Circuitry Modeling Approaches

    Get PDF
    Unsolved questions in computational visual neuroscience research are whether and how neurons and their connecting cortical networks can adapt when normal vision is compromised by a neurodevelopmental disorder or damage to the visual system. This question on neuroplasticity is particularly relevant in the context of rehabilitation therapies that attempt to overcome limitations or damage, through either perceptual training or retinal and cortical implants. Studies on cortical neuroplasticity have generally made the assumption that neuronal population properties and the resulting visual field maps are stable in healthy observers. Consequently, differences in the estimates of these properties between patients and healthy observers have been taken as a straightforward indication for neuroplasticity. However, recent studies imply that the modeled neuronal properties and the cortical visual maps vary substantially within healthy participants, e.g., in response to specific stimuli or under the influence of cognitive factors such as attention. Although notable advances have been made to improve the reliability of stimulus-driven approaches, the reliance on the visual input remains a challenge for the interpretability of the obtained results. Therefore, we argue that there is an important role in the study of cortical neuroplasticity for approaches that assess intracortical signal processing and circuitry models that can link visual cortex anatomy, function, and dynamics

    Predictive masking of an artificial scotoma is associated with a system-wide reconfiguration of neural populations in the human visual cortex

    Get PDF
    The visual brain has the remarkable capacity to complete our percept of the world even when the information extracted from the visual scene is incomplete. This ability to predict missing information based on information from spatially adjacent regions is an intriguing attribute of healthy vision. Yet, it gains particular significance when it masks the perceptual consequences of a retinal lesion, leaving patients unaware of their partial loss of vision and ultimately delaying diagnosis and treatment. At present, our understanding of the neural basis of this masking process is limited which hinders both quantitative modelling as well as translational application. To overcome this, we asked the participants to view visual stimuli with and without superimposed artificial scotoma (AS). We used fMRI to record the associated cortical activity and applied model-based analyses to track changes in cortical population receptive fields and connectivity in response to the introduction of the AS. We found that throughout the visual field and cortical hierarchy, pRFs shifted their preferred position towards the AS border. Moreover, extrastriate areas biased their sampling of V1 towards sections outside the AS projection zone, thereby effectively masking the AS with signals from spared portions of the visual field. We speculate that the signals that drive these system-wide population modifications originate in extrastriate visual areas and, through feedback, also reconfigure the neural populations in the earlier visual areas

    Different judgments about visual textures invoke different eye movement patterns

    Get PDF
    Top-down influences on the guidance of the eyes are generally modeled as modulating influences on bottom-up salience maps. Interested in task-driven influences on how, rather than where, the eyes are guided, we expected differences in eye movement parameters accompanying beauty and roughness judgments about visual textures. Participants judged textures for beauty and roughness, while their gaze-behavior was recorded. Eye movement parameters differed between the judgments, showing task effects on how people look at images. Similarity in the spatial distribution of attention suggests that differences in the guidance of attention are non-spatial, possibly feature-based. During the beauty judgment, participants fixated on patches that were richer in color information, further supporting the idea that differences in the guidance of attention are feature-based. A finding of shorter fixation durations during beauty judgments may indicate that extraction of the relevant features is easier during this judgment. This finding is consistent with a more ambient scanning mode during this judgment. The differences in eye movement parameters during different judgments about highly repetitive stimuli highlight the need for models of eye guidance to go beyond salience maps, to include the temporal dynamics of eye guidance

    Application of Local Approaches to the Assessment of Fatigue Test results obtained for Welded Joints at Sub-Zero Temperatures

    Full text link
    Several studies have found significant increase in the fatigue strength of welded joints of structural steels at sub-zero temperatures. This study addresses the research by investigating the applicability of local fatigue assessment methods to welded joints exposed to sub-zero temperatures. For this purpose, fatigue test results of two fillet weld details with weld toe and weld root failure are evaluated at a range of temperatures using a variety of structural hot-spot and notch stress approaches, then are compared to the nominal stress approach. Large differences in prediction accuracy are found for the analysed assessment methods and both failure locations

    Linking cortical visual processing to viewing behavior using fMRI

    Get PDF
    One characteristic of natural visual behavior in humans is the frequent shifting of eye position. It has been argued that the characteristics of these eye movements can be used to distinguish between distinct modes of visual processing (Unema et al., 2005). These viewing modes would be distinguishable on the basis of the eye-movement parameters fixation duration and saccade amplitude and have been hypothesized to reflect the differential involvement of dorsal and ventral systems in saccade planning and information processing. According to this hypothesis, on the one hand, while in a “pre-attentive” or ambient mode, primarily scanning eye movements are made; in this mode fixation are relatively brief and saccades tends to be relatively large. On the other hand, in “attentive” focal mode, fixations last longer and saccades are relatively small, and result in viewing behavior which could be described as detailed inspection. Thus far, no neuroscientific basis exists to support the idea that such distinct viewing modes are indeed linked to processing in distinct cortical regions. Here, we used fixation-based event-related (FIBER) fMRI in combination with independent component analysis (ICA) to investigate the neural correlates of these viewing modes. While we find robust eye-movement-related activations, our results do not support the theory that the above mentioned viewing modes modulate dorsal and ventral processing. Instead, further analyses revealed that eye-movement characteristics such as saccade amplitude and fixation duration did differentially modulate activity in three clusters in early, ventromedial and ventrolateral visual cortex. In summary, we conclude that evaluating viewing behavior is crucial for unraveling cortical processing in natural vision

    Local neuroplasticity in adult glaucomatous visual cortex

    Get PDF
    The degree to which the adult human visual cortex retains the ability to functionally adapt to damage at the level of the eye remains ill-understood. Previous studies on cortical neuroplasticity primarily focused on the consequences of foveal visual field defects (VFD), yet these findings may not generalize to peripheral defects such as occur in glaucoma. Moreover, recent findings on neuroplasticity are often based on population receptive field (pRF) mapping, but interpreting these results is complicated in the absence of appropriate control conditions. Here, we used fMRI-based neural modeling to assess putative changes in pRFs associated with glaucomatous VFD. We compared the fMRI-signals and pRF in glaucoma participants to those of controls with case-matched simulated VFD. We found that the amplitude of the fMRI-signal is reduced in glaucoma compared to control participants and correlated with disease severity. Furthermore, while coarse retinotopic structure is maintained in all participants with glaucoma, we observed local pRF shifts and enlargements in early visual areas, relative to control participants. These differences suggest that the adult brain retains some degree of local neuroplasticity. This finding has translational relevance, as it is consistent with VFD masking, which prevents glaucoma patients from noticing their VFD and seeking timely treatment.</p

    Assessing Uncertainty and Reliability of Connective Field Estimations From Resting State fMRI Activity at 3T

    Get PDF
    Connective Field (CF) modeling estimates the local spatial integration between signals in distinct cortical visual field areas. As we have shown previously using 7T data, CF can reveal the visuotopic organization of visual cortical areas even when applied to BOLD activity recorded in the absence of external stimulation. This indicates that CF modeling can be used to evaluate cortical processing in participants in which the visual input may be compromised. Furthermore, by using Bayesian CF modeling it is possible to estimate the co-variability of the parameter estimates and therefore, apply CF modeling to single cases. However, no previous studies evaluated the (Bayesian) CF model using 3T resting-state fMRI data. This is important since 3T scanners are much more abundant and more often used in clinical research compared to 7T scanners. Therefore in this study, we investigate whether it is possible to obtain meaningful CF estimates from 3T resting state (RS) fMRI data. To do so, we applied the standard and Bayesian CF modeling approaches on two RS scans, which were separated by the acquisition of visual field mapping data in 12 healthy participants. Our results show good agreement between RS- and visual field (VF)- based maps using either the standard or Bayesian CF approach. In addition to quantify the uncertainty associated with each estimate in both RS and VF data, we applied our Bayesian CF framework to provide the underlying marginal distribution of the CF parameters. Finally, we show how an additional CF parameter, beta, can be used as a data-driven threshold on the RS data to further improve CF estimates. We conclude that Bayesian CF modeling can characterize local functional connectivity between visual cortical areas from RS data at 3T. Moreover, observations obtained using 3T scanners were qualitatively similar to those reported for 7T. In particular, we expect the ability to assess parameter uncertainty in individual participants will be important for future clinical studies

    Eye Movement Evaluation in Multiple Sclerosis and Parkinson's Disease Using a Standardized Oculomotor and Neuro-Ophthalmic Disorder Assessment (SONDA)

    Get PDF
    Evaluating the state of the oculomotor system of a patient is one of the fundamental tests done in neuro-ophthalmology. However, up to date, very few quantitative standardized tests of eye movements' quality exist, limiting this assessment to confrontational tests reliant on subjective interpretation. Furthermore, quantitative tests relying on eye movement properties, such as pursuit gain and saccade dynamics are often insufficient to capture the complexity of the underlying disorders and are often (too) long and tiring. In this study, we present SONDA (Standardized Oculomotor and Neurological Disorder Assessment): this test is based on analyzing eye tracking recorded during a short and intuitive continuous tracking task. We tested patients affected by Multiple Sclerosis (MS) and Parkinson's Disease (PD) and find that: (1) the saccadic dynamics of the main sequence alone are not sufficient to separate patients from healthy controls; (2) the combination of spatio-temporal and statistical properties of saccades and saccadic dynamics enables an identification of oculomotor abnormalities in both MS and PD patients. We conclude that SONDA constitutes a powerful screening tool that allows an in-depth evaluation of (deviant) oculomotor behavior in a few minutes of non-invasive testing
    corecore