370 research outputs found

    The Josephson light-emitting diode

    Full text link
    We consider an optical quantum dot where an electron level and a hole level are coupled to respective superconducting leads. We find that electrons and holes recombine producing photons at discrete energies as well as a continuous tail. Further, the spectral lines directly probe the induced superconducting correlations on the dot. At energies close to the applied bias voltage eV, a parameter range exists, where radiation proceeds in pairwise emission of polarization correlated photons. At energies close to 2eV, emitted photons are associated with Cooper pair transfer and are reminiscent of Josephson radiation. We discuss how to probe the coherence of these photons in a SQUID geometry via single photon interference.Comment: Main text: 4 pages, 4 figures, Supplementary material: 8 pages, 4 figure

    Measurement of filling factor 5/2 quasiparticle interference: observation of charge e/4 and e/2 period oscillations

    Full text link
    A standing problem in low dimensional electron systems is the nature of the 5/2 fractional quantum Hall state: its elementary excitations are a focus for both elucidating the state's properties and as candidates in methods to perform topological quantum computation. Interferometric devices may be employed to manipulate and measure quantum Hall edge excitations. Here we use a small area edge state interferometer designed to observe quasiparticle interference effects. Oscillations consistent in detail with the Aharanov-Bohm effect are observed for integer and fractional quantum Hall states (filling factors 2, 5/3, and 7/3) with periods corresponding to their respective charges and magnetic field positions. With these as charge calibrations, at 5/2 filling factor and at lowest temperatures periodic transmission through the device consistent with quasiparticle charge e/4 is observed. The principal finding of this work is that in addtion to these e/4 oscillations, periodic structures corresponding to e/2 are also observed at 5/2 and at lowest temperatures. Properties of the e/4 and e/2 oscillations are examined with the device sensitivity sufficient to observe temperature evolution of the 5/2 quasiparticle interference. In the model of quasiparticle interference, this presence of an effective e/2 period may empirically reflect an e/2 quasiparticle charge, or may reflect multiple passes of the e/4 quasiparticle around the interferometer. These results are discussed within a picture of e/4 quasiparticle excitations potentially possessing non-Abelian statistics. These studies demonstrate the capacity to perform interferometry on 5/2 excitations and reveal properties important for understanding this state and its excitations.Comment: version 3 contains additional data beyond version 2, 26 pages, 8 figures PNAS 081259910

    Thermal spin transport and spin-orbit interaction in ferromagnetic/non-magnetic metals

    Get PDF
    In this article we extend the currently established diffusion theory of spin-dependent electrical conduction by including spin-dependent thermoelectricity and thermal transport. Using this theory, we propose new experiments aimed at demonstrating novel effects such as the spin-Peltier effect, the reciprocal of the recently demonstrated thermally driven spin injection, as well as the magnetic heat valve. We use finite-element methods to model specific devices in literature to demonstrate our theory. Spin-orbit effects such as anomalous-Hall, -Nernst, anisotropic magnetoresistance and spin-Hall are also included in this model

    Maximum-entropy theory of steady-state quantum transport

    Get PDF
    We develop a theoretical framework for describing steady-state quantum transport phenomena, based on the general maximum-entropy principle of nonequilibrium statistical mechanics. The general form of the many-body density matrix is derived, which contains the invariant part of the current operator that guarantees the nonequilibrium and steady-state character of the ensemble. Several examples of the theory are given, demonstrating the relationship of the present treatment to the widely used scattering-state occupation schemes at the level of the self-consistent single-particle approximation. The latter schemes are shown not to maximize the entropy, except in certain limits

    Magnetic order of Dy3+ and Fe3+ moments in antiferromagnetic DyFeO3 probed by spin Hall magnetoresistance and spin Seebeck effect

    Get PDF
    We report on spin Hall magnetoresistance (SMR) and spin Seebeck effect (SSE) in single crystal of the rare-earth antiferromagnet DyFeO3_{3} with a thin Pt film contact. The angular shape and symmetry of the SMR at elevated temperatures reflect the antiferromagnetic order of the Fe3+^{3+} moments as governed by the Zeeman energy, the magnetocrystalline anisotropy and the Dzyaloshinskii-Moriya interaction. We interpret the observed linear dependence of the signal on the magnetic field strength as evidence for field-induced order of the Dy3+^{3+} moments up to room temperature. At and below the Morin temperature of 50 \,K, the SMR monitors the spin-reorientation phase transition of Fe3+^{3+} spins. Below 23 \,K, additional features emerge that persist below 4 \,K, the ordering temperature of the Dy3+^{3+} magnetic sublattice. We conclude that the combination of SMR and SSE is a simple and efficient tool to study spin reorientation phase transitions and sublattice magnetizations

    Imaging Inter-Edge State Scattering Centers in the Quantum Hall Regime

    Full text link
    We use an atomic force microscope tip as a local gate to study the scattering between edge channels in a 2D electron gas in the quantum Hall regime. The scattering is dominated by individual, microscopic scattering centers, which we directly image here for the first time. The tip voltage dependence of the scattering indicates that tunneling occurs through weak links and localized states.Comment: 4 pages, 5 figure

    Comparing conductance quantization in quantum wires and Quantum Hall systems

    Full text link
    We propose a new calculation of the DC conductance of a 1-dimensional electron system described by the Luttinger model. Our approach is based on the ideas of Landauer and B\"{u}ttiker and on the methods of current algebra. We analyse in detail the way in which the system can be coupled to external reservoirs. This determines whether the conductance is renormalized or not. We show that although a quantum wire and a Fractional Quantum Hall system are described by the same effective theory, their coupling to external reservoirs is different. As a consequence, the conductance in the wire is quantized in integer units of e2/he^2/h per spin orientation whereas the Hall conductance allows for fractional quantization.Comment: 3 pages, LaTe

    Subgap anomaly and above-energy-gap structure in chains of diffusive SNS junctions

    Full text link
    We present the results of low-temperature transport measurements on chains of superconductor--normal-constriction--superconductor (SNS) junctions fabricated on the basis of superconducting PtSi film. A comparative study of the properties of the chains, consisting of 3 and 20 SNS junctions in series, and single SNS junctions reveals essential distinctions in the behavior of the current-voltage characteristics of the systems: (i) the gradual decrease of the effective suppression voltage for the excess conductivity observed at zero bias as the quantity of the SNS junctions increases, (ii) a rich fine structure on the dependences dV/dI-V at dc bias voltages higher than the superconducting gap and corresponding to some multiples of 2\Delta/e. A model to explain this above-energy-gap structure based on energy relaxation of electron via Cooper-pair-breaking in superconducting island connecting normal metal electrods is proposed.Comment: RevTex, 5 pages, 4 figure

    Localization fom conductance in few-channel disordered wires

    Full text link
    We study localization in two- and three channel quasi-1D systems using multichain tight-binding Anderson models with nearest-neighbour interchain hopping. In the three chain case we discuss both the case of free- and that of periodic boundary conditions between the chains. The finite disordered wires are connected to ideal leads and the localization length is defined from the Landauer conductance in terms of the transmission coefficients matrix. The transmission- and reflection amplitudes in properly defined quantum channels are obtained from S-matrices constructed from transfer matrices in Bloch wave bases for the various quasi-1D systems. Our exact analytic expressions for localization lengths for weak disorder reduce to the Thouless expression for 1D systems in the limit of vanishing interchain hopping. For weak interchain hopping the localization length decreases with respect to the 1D value in all three cases. In the three-channel cases it increases with interchain hopping over restricted domains of large hopping
    • …
    corecore