533 research outputs found

    Neural Processing of Emotional Musical and Nonmusical Stimuli in Depression

    Get PDF
    Background Anterior cingulate cortex (ACC) and striatum are part of the emotional neural circuitry implicated in major depressive disorder (MDD). Music is often used for emotion regulation, and pleasurable music listening activates the dopaminergic system in the brain, including the ACC. The present study uses functional MRI (fMRI) and an emotional nonmusical and musical stimuli paradigm to examine how neural processing of emotionally provocative auditory stimuli is altered within the ACC and striatum in depression. Method Nineteen MDD and 20 never-depressed (ND) control participants listened to standardized positive and negative emotional musical and nonmusical stimuli during fMRI scanning and gave subjective ratings of valence and arousal following scanning. Results ND participants exhibited greater activation to positive versus negative stimuli in ventral ACC. When compared with ND participants, MDD participants showed a different pattern of activation in ACC. In the rostral part of the ACC, ND participants showed greater activation for positive information, while MDD participants showed greater activation to negative information. In dorsal ACC, the pattern of activation distinguished between the types of stimuli, with ND participants showing greater activation to music compared to nonmusical stimuli, while MDD participants showed greater activation to nonmusical stimuli, with the greatest response to negative nonmusical stimuli. No group differences were found in striatum. Conclusions These results suggest that people with depression may process emotional auditory stimuli differently based on both the type of stimulation and the emotional content of that stimulation. This raises the possibility that music may be useful in retraining ACC function, potentially leading to more effective and targeted treatments

    Protein Sequence Alignment Analysis by Local Covariation: Coevolution Statistics Detect Benchmark Alignment Errors

    Get PDF
    The use of sequence alignments to understand protein families is ubiquitous in molecular biology. High quality alignments are difficult to build and protein alignment remains one of the largest open problems in computational biology. Misalignments can lead to inferential errors about protein structure, folding, function, phylogeny, and residue importance. Identifying alignment errors is difficult because alignments are built and validated on the same primary criteria: sequence conservation. Local covariation identifies systematic misalignments and is independent of conservation. We demonstrate an alignment curation tool, LoCo, that integrates local covariation scores with the Jalview alignment editor. Using LoCo, we illustrate how local covariation is capable of identifying alignment errors due to the reduction of positional independence in the region of misalignment. We highlight three alignments from the benchmark database, BAliBASE 3, that contain regions of high local covariation, and investigate the causes to illustrate these types of scenarios. Two alignments contain sequential and structural shifts that cause elevated local covariation. Realignment of these misaligned segments reduces local covariation; these alternative alignments are supported with structural evidence. We also show that local covariation identifies active site residues in a validated alignment of paralogous structures. Loco is available at https://sourceforge.net/projects/locoprotein/files

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures

    Background frequencies for residue variability estimates: BLOSUM revisited

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shannon entropy applied to columns of multiple sequence alignments as a score of residue conservation has proven one of the most fruitful ideas in bioinformatics. This straightforward and intuitively appealing measure clearly shows the regions of a protein under increased evolutionary pressure, highlighting their functional importance. The inability of the column entropy to differentiate between residue types, however, limits its resolution power.</p> <p>Results</p> <p>In this work we suggest generalizing Shannon's expression to a function with similar mathematical properties, that, at the same time, includes observed propensities of residue types to mutate to each other. To do that, we revisit the original construction of BLOSUM matrices, and re-interpret them as mutation probability matrices. These probabilities are then used as background frequencies in the revised residue conservation measure.</p> <p>Conclusion</p> <p>We show that joint entropy with BLOSUM-proportional probabilities as a reference distribution enables detection of protein functional sites comparable in quality to a time-costly maximum-likelihood evolution simulation method (rate4site), and offers greater resolution than the Shannon entropy alone, in particular in the cases when the available sequences are of narrow evolutionary scope.</p

    Career patterns of U.S. male academic social scientists

    Full text link
    Seventy-four U.S. male academic social scientists provided career stage data. All were born between 1893 and 1903. The subjects were divided into four groups on the basis of their scholarly article productivity after age 59. Spilerman's conceptualization of work history guided the analysis. To a lesser extent, adult development theory (e.g., Hall and Nougaim, 1968) was also examined.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42843/1/10734_2004_Article_BF00139794.pd

    On the Accessibility of Adaptive Phenotypes of a Bacterial Metabolic Network

    Get PDF
    The mechanisms by which adaptive phenotypes spread within an evolving population after their emergence are understood fairly well. Much less is known about the factors that influence the evolutionary accessibility of such phenotypes, a pre-requisite for their emergence in a population. Here, we investigate the influence of environmental quality on the accessibility of adaptive phenotypes of Escherichia coli's central metabolic network. We used an established flux-balance model of metabolism as the basis for a genotype-phenotype map (GPM). We quantified the effects of seven qualitatively different environments (corresponding to both carbohydrate and gluconeogenic metabolic substrates) on the structure of this GPM. We found that the GPM has a more rugged structure in qualitatively poorer environments, suggesting that adaptive phenotypes could be intrinsically less accessible in such environments. Nevertheless, on average ∼74% of the genotype can be altered by neutral drift, in the environment where the GPM is most rugged; this could allow evolving populations to circumvent such ruggedness. Furthermore, we found that the normalized mutual information (NMI) of genotype differences relative to phenotype differences, which measures the GPM's capacity to transmit information about phenotype differences, is positively correlated with (simulation-based) estimates of the accessibility of adaptive phenotypes in different environments. These results are consistent with the predictions of a simple analytic theory that makes explicit the relationship between the NMI and the speed of adaptation. The results suggest an intuitive information-theoretic principle for evolutionary adaptation; adaptation could be faster in environments where the GPM has a greater capacity to transmit information about phenotype differences. More generally, our results provide insight into fundamental environment-specific differences in the accessibility of adaptive phenotypes, and they suggest opportunities for research at the interface between information theory and evolutionary biology

    Age, Health and Life Satisfaction Among Older Europeans

    Get PDF
    In this paper we investigate how age affects the self-reported level of life satisfaction among the elderly in Europe. By using a vignette approach, we find evidence that age influences life satisfaction through two counterbalancing channels. On the one hand, controlling for the effects of all other variables, the own perceived level of life satisfaction increases with age. On the other hand, given the same true level of life satisfaction, older respondents are more likely to rank themselves as “dissatisfied” with their life than younger individuals. Detrimental health conditions and physical limitations play a crucial role in explaining scale biases in the reporting style of older individuals

    First-Step Mutations for Adaptation at Elevated Temperature Increase Capsid Stability in a Virus

    Get PDF
    The relationship between mutation, protein stability and protein function plays a central role in molecular evolution. Mutations tend to be destabilizing, including those that would confer novel functions such as host-switching or antibiotic resistance. Elevated temperature may play an important role in preadapting a protein for such novel functions by selecting for stabilizing mutations. In this study, we test the stability change conferred by single mutations that arise in a G4-like bacteriophage adapting to elevated temperature. The vast majority of these mutations map to interfaces between viral coat proteins, suggesting they affect protein-protein interactions. We assess their effects by estimating thermodynamic stability using molecular dynamic simulations and measuring kinetic stability using experimental decay assays. The results indicate that most, though not all, of the observed mutations are stabilizing

    Clinical and pathological characteristics of Chinese patients with BRCA related breast cancer

    Get PDF
    Breast cancers related to BRCA mutations are associated with particular biological features. Here we report the clinical and pathological characteristics of breast cancer in Chinese women with and without BRCA mutations and of carriers of BRCA1 mutations compared to BRCA2 mutations. Two hundred and 26 high-risk Hong Kong Chinese women were tested for BRCA mutations, medical information was obtained from medical records, and risk and demographic information was obtained from personal interviews. In this cohort, 28 (12.4%) women were BRCA mutation carriers and among these carriers, 39.3% were BRCA1 and 60.7% were BRCA2 mutations. Mutation carriers were more likely to have a familial history of breast and ovarian cancer, high-grade cancers, and triple negative (TN) cancers. Prevalence of TN was 48.3% in BRCA carriers and 25.6% in non-carriers and was 67.7% in BRCA1 and 35.3% in BRCA2 carriers. Estrogen receptor (ER) negative cancer was significantly associated with BRCA1 mutations, especially in those under 40 years of age. BRCA-related breast cancer in this Chinese population is associated with family history and adverse pathological/prognostic features, with BRCA2 mutations being more prevalent but BRCA1 carriers having more aggressive and TN cancers. Compared to Caucasian populations, prevalence of BRCA2 mutations and TN cancer in BRCA2 mutation carriers in Chinese population are elevated

    Integrating plant physiology into simulation of fire behavior and effects

    Get PDF
    Wildfires are a global crisis, but current fire models fail to capture vegetation response to changing climate. With drought and elevated temperature increasing the importance of vegetation dynamics to fire behavior, and the advent of next generation models capable of capturing increasingly complex physical processes, we provide a renewed focus on representation of woody vegetation in fire models. Currently, the most advanced representations of fire behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not capture variation in live fuel (i.e. living plant) properties. We demonstrate that plant water and carbon dynamics, which influence combustion and heat transfer into the plant and often dictate plant survival, provide the mechanistic linkage between fire behavior and effects. Our conceptual framework linking remotely sensed estimates of plant water and carbon to fine-scale models of fire behavior and effects could be a critical first step toward improving the fidelity of the coarse scale models that are now relied upon for global fire forecasting. This process-based approach will be essential to capturing the influence of physiological responses to drought and warming on live fuel conditions, strengthening the science needed to guide fire managers in an uncertain future
    corecore