467 research outputs found

    A conserved regulatory program drives emergence of the lateral plate mesoderm

    Get PDF
    Cardiovascular cell lineages emerge with kidney, smooth muscle, and limb skeleton progenitors from the lateral plate mesoderm (LPM). How the LPM emerges during development and how it has evolved to form key lineages of the vertebrate body plan remain unknown. Here, we captured LPM formation by transgenic in toto imaging and lineage tracing using the first pan-LPM enhancer element from the zebrafish gene draculin (drl). drl LPM enhancer-based reporters are specifically active in LPM-corresponding territories of several chordate species, uncovering a universal LPM-specific gene program. Distinct from other mesoderm, we identified EomesA, FoxH1, and MixL1 with BMP/Nodal-controlled Smad activity as minimally required factors to drive drl-marked LPM formation. Altogether, our work provides a developmental and mechanistic framework for LPM emergence and the in vitro differentiation of cardiovascular cell types. Our findings suggest that the LPM may represent an ancient cell fate domain that predates ancestral vertebrates

    The spectrum of thyroid dysfunction in an Australian hepatitis C population treated with combination Interferon-α2β and Ribavirin

    Get PDF
    BACKGROUND: The study aims to assess the pattern of thyroid response to combination Interferon-α2β (IFN-α) and Ribavirin (RBV) anti-viral therapy in an Australian hepatitis C cohort. These include the prevalence of thyroid dysfunction (TD) including hyperthyroidism and hypothyroidism and their possible predictors, the common overall pattern of thyroid function tests whilst receiving therapy and TD outcomes, and the correlation with HCV status outcome. METHODS: A retrospective analysis of all medical records was performed to assess thyroid function in Hepatitis C Virus (HCV) patients who were treated at the Hunter Area hepatitis C treatment center between 1995 and March 2004. The centre is part of the John Hunter hospital, a major tertiary referral centre in New South Wales, Australia. RESULTS: There were 272 cases available for review. The prevalence of TD is 6.7 percent and is made up predominantly of females (80 percent). There were 3 (1.1 percent) cases of hyperthyroidism with 2 (67 percent) females. Thirteen out of fifteen (80 percent) cases of hypothyroidism were females with the overall prevalence of 5.5 percent. The majority of hypothyroid patients still required Thyroxine supplement at the end of follow up. CONCLUSION: Ninety three percent of HCV treated patients have intact thyroid function at the end of treatment. The predominant TD is hypothyroidism. The predominant pattern of thyrotoxicosis (TTX) is that of thyroiditis although the number is small. Graves' like disease was not observed. People with pre-existing thyroid auto-antibodies should be closely monitored for thyroid dysfunction, particularly hypothyroidism

    A morphometric system to distinguish sheep and goat postcranial bones.

    Get PDF
    Distinguishing between the bones of sheep and goat is a notorious challenge in zooarchaeology. Several methodological contributions have been published at different times and by various people to facilitate this task, largely relying on a macro-morphological approach. This is now routinely adopted by zooarchaeologists but, although it certainly has its value, has also been shown to have limitations. Morphological discriminant criteria can vary in different populations and correct identification is highly dependent upon a researcher's experience, availability of appropriate reference collections, and many other factors that are difficult to quantify. There is therefore a need to establish a more objective system, susceptible to scrutiny. In order to fulfil such a requirement, this paper offers a comprehensive morphometric method for the identification of sheep and goat postcranial bones, using a sample of more than 150 modern skeletons as a basis, and building on previous pioneering work. The proposed method is based on measurements-some newly created, others previously published-and its use is recommended in combination with the more traditional morphological approach. Measurement ratios, used to translate morphological traits into biometrical attributes, are demonstrated to have substantial diagnostic potential, with the vast majority of specimens correctly assigned to species. The efficacy of the new method is also tested with Discriminant Analysis, which provides a successful verification of the biometrical indices, a statistical means to select the most promising measurements, and an additional line of analysis to be used in conjunction with the others

    A morphometric system to distinguish sheep and goat postcranial bones.

    Get PDF
    Distinguishing between the bones of sheep and goat is a notorious challenge in zooarchaeology. Several methodological contributions have been published at different times and by various people to facilitate this task, largely relying on a macro-morphological approach. This is now routinely adopted by zooarchaeologists but, although it certainly has its value, has also been shown to have limitations. Morphological discriminant criteria can vary in different populations and correct identification is highly dependent upon a researcher's experience, availability of appropriate reference collections, and many other factors that are difficult to quantify. There is therefore a need to establish a more objective system, susceptible to scrutiny. In order to fulfil such a requirement, this paper offers a comprehensive morphometric method for the identification of sheep and goat postcranial bones, using a sample of more than 150 modern skeletons as a basis, and building on previous pioneering work. The proposed method is based on measurements-some newly created, others previously published-and its use is recommended in combination with the more traditional morphological approach. Measurement ratios, used to translate morphological traits into biometrical attributes, are demonstrated to have substantial diagnostic potential, with the vast majority of specimens correctly assigned to species. The efficacy of the new method is also tested with Discriminant Analysis, which provides a successful verification of the biometrical indices, a statistical means to select the most promising measurements, and an additional line of analysis to be used in conjunction with the others

    A conserved regulatory program drives emergence of the lateral plate mesoderm

    Get PDF
    Cardiovascular cell lineages emerge with kidney, smooth muscle, and limb skeleton progenitors from the lateral plate mesoderm (LPM). How the LPM emerges during development and how it has evolved to form key lineages of the vertebrate body plan remain unknown. Here, we captured LPM formation by transgenic in toto imaging and lineage tracing using the first pan-LPM enhancer element from the zebrafish gene draculin (drl). drl LPM enhancer-based reporters are specifically active in LPM-corresponding territories of several chordate species, uncovering a universal LPM-specific gene program. Distinct from other mesoderm, we identified EomesA, FoxH1, and MixL1 with BMP/Nodal-controlled Smad activity as minimally required factors to drive drl-marked LPM formation. Altogether, our work provides a developmental and mechanistic framework for LPM emergence and the in vitro differentiation of cardiovascular cell types. Our findings suggest that the LPM may represent an ancient cell fate domain that predates ancestral vertebrates

    A conserved regulatory program initiates lateral plate mesoderm emergence across chordates

    Get PDF
    Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo

    Reverse Effect of Mammalian Hypocalcemic Cortisol in Fish: Cortisol Stimulates Ca2+ Uptake via Glucocorticoid Receptor-Mediated Vitamin D3 Metabolism

    Get PDF
    Cortisol was reported to downregulate body-fluid Ca2+ levels in mammals but was proposed to show hypercalcemic effects in teleostean fish. Fish, unlike terrestrial vertebrates, obtain Ca2+ from the environment mainly via the gills and skin rather than by dietary means, and have to regulate the Ca2+ uptake functions to cope with fluctuating Ca2+ levels in aquatic environments. Cortisol was previously found to regulate Ca2+ uptake in fish; however, the molecular mechanism behind this is largely unclear. Zebrafish were used as a model to explore this issue. Acclimation to low-Ca2+ fresh water stimulated Ca2+ influx and expression of epithelial calcium channel (ecac), 11β-hydroxylase and the glucocorticoid receptor (gr). Exogenous cortisol increased Ca2+ influx and the expressions of ecac and hydroxysteroid 11-beta dehydrogenase 2 (hsd11b2), but downregulated 11β-hydroxylase and the gr with no effects on other Ca2+ transporters or the mineralocorticoid receptor (mr). Morpholino knockdown of the GR, but not the MR, was found to impair zebrafish Ca2+ uptake function by inhibiting the ecac expression. To further explore the regulatory mechanism of cortisol in Ca2+ uptake, the involvement of vitamin D3 was analyzed. Cortisol stimulated expressions of vitamin D-25hydroxylase (cyp27a1), cyp27a1 like (cyp27a1l), 1α-OHase (cyp27b1) at 3 dpf through GR, the first time to demonstrate the relationship between cortisol and vitamin D3 in fish. In conclusion, cortisol stimulates ecac expression to enhance Ca2+ uptake functions, and this control pathway is suggested to be mediated by the GR. Lastly, cortisol also could mediate vitamin D3 signaling to stimulate Ca2+ uptake in zebrafish
    corecore