354 research outputs found

    Visual Blood, a 3D Animated Computer Model to Optimize the Interpretation of Blood Gas Analysis

    Get PDF
    Acid–base homeostasis is crucial for all physiological processes in the body and is evaluated using arterial blood gas (ABG) analysis. Screens or printouts of ABG results require the interpretation of many textual elements and numbers, which may delay intuitive comprehension. To optimise the presentation of the results for the specific strengths of human perception, we developed Visual Blood, an animated virtual model of ABG results. In this study, we compared its performance with a conventional result printout. Seventy physicians from three European university hospitals participated in a computer-based simulation study. Initially, after an educational video, we tested the participants’ ability to assign individual Visual Blood visualisations to their corresponding ABG parameters. As the primary outcome, we tested caregivers’ ability to correctly diagnose simulated clinical ABG scenarios with Visual Blood or conventional ABG printouts. For user feedback, participants rated their agreement with statements at the end of the study. Physicians correctly assigned 90% of the individual Visual Blood visualisations. Regarding the primary outcome, the participants made the correct diagnosis 86% of the time when using Visual Blood, compared to 68% when using the conventional ABG printout. A mixed logistic regression model showed an odds ratio for correct diagnosis of 3.4 (95%CI 2.00–5.79, p < 0.001) and an odds ratio for perceived diagnostic confidence of 1.88 (95%CI 1.67–2.11, p < 0.001) in favour of Visual Blood. A linear mixed model showed a coefficient for perceived workload of −3.2 (95%CI −3.77 to −2.64) in favour of Visual Blood. Fifty-one of seventy (73%) participants agreed or strongly agreed that Visual Blood was easy to use, and fifty-five of seventy (79%) agreed that it was fun to use. In conclusion, Visual Blood improved physicians’ ability to diagnose ABG results. It also increased perceived diagnostic confidence and reduced perceived workload. This study adds to the growing body of research showing that decision-support tools developed around human cognitive abilities can streamline caregivers’ decision-making and may improve patient care

    Design of MRI Structured Spiking Neural Networks and Learning Algorithms for Personalized Modelling, Analysis, and Prediction of EEG Signals

    Get PDF
    Abstract This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others

    Does vimentin help to delineate the so-called 'basal type breast cancer'?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vimentin is one of the cytoplasmic intermediate filament proteins which are the major component of the cytoskeleton. In our study we checked the usefulness of vimentin expression in identifying cases of breast cancer with poorer prognosis, by adding vimentin to the immunopanel consisting of basal type cytokeratins, estrogen, progesterone, and HER2 receptors.</p> <p>Methods</p> <p>179 tissue specimens of invasive operable ductal breast cancer were assessed by the use of immunohistochemistry. The median follow-up period for censored cases was 90 months.</p> <p>Results</p> <p>38 cases (21.2%) were identified as being vimentin-positive. Vimentin-positive tumours affected younger women (p = 0.024), usually lacked estrogen and progesterone receptor (p < 0.001), more often expressed basal cytokeratins (<0.001), and were high-grade cancers (p < 0.001). Survival analysis showed that vimentin did not help to delineate basal type phenotype in a triple negative (ER, PgR, HER2-negative) group. For patients with 'vimentin or CK5/6, 14, 17-positive' tumours, 5-year estimated survival rate was 78.6%, whereas for patients with 'vimentin, or CK5/6, 14, 17-negative' tumours it was 58.3% (log-rank p = 0.227).</p> <p>Conclusion</p> <p>We were not able to better delineate an immunohistochemical definition of basal type of breast cancer by adding vimentin to the immunopanel consisted of ER, PgR, HER2, CK5/6, 14 and 17 markers, when overall survival was a primary end-point.</p

    Fluid flow in the osteocyte mechanical environment : a fluid-structure interaction approach

    Get PDF
    Osteocytes are believed to be the primary sensor of mechanical stimuli in bone, which orchestrate osteoblasts and osteoclasts to adapt bone structure and composition to meet physiological loading demands. Experimental studies to quantify the mechanical environment surrounding bone cells are challenging, and as such, computational and theoretical approaches have modelled either the solid or fluid environment of osteocytes to predict how these cells are stimulated in vivo. Osteocytes are an elastic cellular structure that deforms in response to the external fluid flow imposed by mechanical loading. This represents a most challenging multi-physics problem in which fluid and solid domains interact, and as such, no previous study has accounted for this complex behaviour. The objective of this study is to employ fluid–structure interaction (FSI) modelling to investigate the complex mechanical environment of osteocytes in vivo. Fluorescent staining of osteocytes was performed in order to visualise their native environment and develop geometrically accurate models of the osteocyte in vivo. By simulating loading levels representative of vigorous physiological activity (3,000ΌΔ compression and 300 Pa pressure gradient), we predict average interstitial fluid velocities (∌60.5ÎŒ m/s ) and average maximum shear stresses (∌11 Pa ) surrounding osteocytes in vivo. Interestingly, these values occur in the canaliculi around the osteocyte cell processes and are within the range of stimuli known to stimulate osteogenic responses by osteoblastic cells in vitro. Significantly our results suggest that the greatest mechanical stimulation of the osteocyte occurs in the cell processes, which, cell culture studies have indicated, is the most mechanosensitive area of the cell. These are the first computational FSI models to simulate the complex multi-physics mechanical environment of osteocyte in vivo and provide a deeper understanding of bone mechanobiology

    The differences in thermal profiles between normal and leukemic cells exposed to anticancer drug evaluated by differential scanning calorimetry

    Get PDF
    Chronic lymphocytic leukemia (CLL) is a heterogenous disease with an imbalance between apoptosis and cell proliferation. Therefore, the main goal in CLL therapy is to induce apoptosis and effectively support this process in transformed B lymphocytes. In the current study, we have compared differential scanning calorimetry (DSC) profiles of nuclei isolated from CLL cells and normal mononuclear cells exposed to cladribine or fludarabine combined with mafosfamide (CM; FM), and additionally to CM combined with monoclonal antibody—rituximab (RCM) for 48 h, as well as in culture medium only (controls). Under current study, the mononuclear cells from peripheral blood (PBMCs) of healthy individuals have been included. The obtained results have shown the presence of thermal transition at 95 ± 5 °C in most of nuclear preparations (92.2 %) isolated from blood of CLL patients. This thermal characteristic parameter was changed after drug exposure, however, to a different extent. These thermal changes were accompanied by the decrease of cell viability, an elevation of apoptosis rate and the changes in expression/proteolysis of poly(ADP-ribose)polymerase-1—main marker of apoptosis. Importantly, in DSC profiles of nuclear preparations of PBMCs from blood of healthy donors exposed to investigated drug combinations and control CLL cells, the lack of such changes was observed. Our results confirmed that DSC technique complemented with other biological approaches could be helpful in tailoring therapy for CLL patients.Research was sponsored by Grant from the Polish National Science Centre (No. 2011/01/B/NZ/0102); Results of presented study were partially presented in oral presentation on 2nd Central and Eastern European Conference on Thermal Analysis and Calorimetry in Vilnius, Lithuania, 201
    • 

    corecore