2,187 research outputs found

    Quantum Spin Lenses in Atomic Arrays

    Full text link
    We propose and discuss `quantum spin lenses', where quantum states of delocalized spin excitations in an atomic medium are `focused' in space in a coherent quantum process down to (essentially) single atoms. These can be employed to create controlled interactions in a quantum light-matter interface, where photonic qubits stored in an atomic ensemble are mapped to a quantum register represented by single atoms. We propose Hamiltonians for quantum spin lenses as inhomogeneous spin models on lattices, which can be realized with Rydberg atoms in 1D, 2D and 3D, and with strings of trapped ions. We discuss both linear and non-linear quantum spin lenses: in a non-linear lens, repulsive spin-spin interactions lead to focusing dynamics conditional to the number of spin excitations. This allows the mapping of quantum superpositions of delocalized spin excitations to superpositions of spatial spin patterns, which can be addressed by light fields and manipulated. Finally, we propose multifocal quantum spin lenses as a way to generate and distribute entanglement between distant atoms in an atomic lattice array.Comment: 13 pages, 9 figure

    Long-Range Excitons in Optical Absorption Spectra of Electroluminescent Polymer Poly(para-phenylenevinylene)

    Full text link
    The component of photoexcited states with large spatial extent is investigated for poly(para-phenylenevinylene) using the intermediate exciton theory. We find a peak due to long-range excitons at the higher-energy side of the lowest main feature of optical spectra. The fact that the onset of long-range excitons is located near the energy gap is related to the mechanisms of large photocurrents measured in such energy regions. We show that a large value of the hopping integral is realistic for characterizing optical excitations.Comment: To be published in J. Phys. Soc. Jpn. (Letters

    Alfred Czarnetzki, 1937 - 2013

    Get PDF

    Age-at-death estimation in archaeological samples: Differences in population means resulting from different aging methods can be predicted from the mean ages of method-specific reference samples

    Get PDF
    Age mimicry is a well-known phenomenon in the application of osteological age-estimation methods. Age mimicry refers to the fact that predicting age-at-death from a specific trait (age indicator) based on the relation observed in a specific reference sample implies that age estimates to some degree reflect the age structure of the reference sample. In particular, the estimated population mean in a target population in which an age-estimation method is applied is shifted towards the mean in the method-specific reference sample. Consequently, differences in population means between different age-estimation methods in the same target population may be due to differences in mean age of the reference samples used to develop the age-estimation methods. We aim at quantifying the expected magnitude for such differences. Fifteen different traditional age-estimation methods were applied to a sample of 675 adult individuals from the early medieval cemetery of Mannheim-Seckenheim. The relation of the observed estimated population age means and the mean age in the reference samples was analyzed by linear regression. We find that up to 80% of the variation in the estimated population age means can be explained by the variation of the mean age in the reference samples. Furthermore, differences in the magnitude of 3 to 4 years in the mean age between two reference samples can imply a 1-year difference in estimated target population age means. Because large differences in mean age between reference samples used to develop different age-estimation methods are common, some care is needed in interpreting differences between individual age estimates or population mean age estimates in cases where different age-estimation techniques are used

    Laser structuring of NMC 811 high energy electrodes in battery production for enhancing the electrochemical performance for xEV energy storage systems

    Get PDF
    Layered oxide cathodes, especially thick-film electrodes like lithium nickel manganese cobalt oxide, NMC, are under continuously investigation to meet the ambitious requirements, e.g. 700 Wh/l, for future Li-ion batteries in electric drive applications. The objective of the most current studies is to reduce the Co content with a concurrent increasing Ni-content in the NMC cathodes such as NMC 811 [1]. It must not leave the fact out of consideration, that NMC cathodes suffer from low high rate capability and corresponding low capacity retention at high C-rates. In particular, the negative impact is even higher for thick-film high energy cathodes. To counteract the negative effect, high repetition ultrafast laser ablation is applied to create appropriate 3D electrode designs [2]. New Li+-diffusion pathways, applied by the laser structuring process, shell enhance electrolyte wettability and reduce overpotentials at high C-rates. It is attempted to integrate the laser structuring into a continuous roll-to-roll electrode production process. In this way, the positive properties achieved through 3D structuring can also be obtained for Li-ion batteries that are produced on a large scale. By using this novel production technology, future NMC batteries can be produced with improved performance characteristics for xEV applications. Furthermore, this technology can also be applied for other generation 3b battery cells. This work is performed under the frame of the RealLi! project, in which the following aspects are covered: a) Development of thick film NMC811 electrodes with high areal capacity b) Passivation approach to improve cycle stability and lifetime c) Cell Assembly and electrochemical characterization d) Holistic evaluation of the potential environmental impact of the NMC811 cells via life cycle assessment e) An experimentally validated electrochemical model to describe electrode structures and their optimization. f) Improved electrochemical performance of NMC811 electrodes on a laboratory scale by using 3D laser structuring. g) Scale up of the 3D laser structuring process and corresponding improved electrochemical performance of NMC811 electrodes in pouch cell format by using 3D laser ablation

    Organic Acid Excretion in Penicillium ochrochloron Increases with Ambient pH

    Get PDF
    Despite being of high biotechnological relevance, many aspects of organic acid excretion in filamentous fungi like the influence of ambient pH are still insufficiently understood. While the excretion of an individual organic acid may peak at a certain pH value, the few available studies investigating a broader range of organic acids indicate that total organic acid excretion rises with increasing external pH. We hypothesized that this phenomenon might be a general response of filamentous fungi to increased ambient pH. If this is the case, the observation should be widely independent of the organism, growth conditions, or experimental design and might therefore be a crucial key point in understanding the function and mechanisms of organic acid excretion in filamentous fungi. In this study we explored this hypothesis using ammonium-limited chemostat cultivations (pH 2–7), and ammonium or phosphate-limited bioreactor batch cultivations (pH 5 and 7). Two strains of Penicillium ochrochloron were investigated differing in the spectrum of excreted organic acids. Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation, and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e., overflow metabolism, charge balance, and aggressive acidification hypothesis

    Enhancement of the formation of ultracold 85^{85}Rb2_2 molecules due to resonant coupling

    Full text link
    We have studied the effect of resonant electronic state coupling on the formation of ultracold ground-state 85^{85}Rb2_2. Ultracold Rb2_2 molecules are formed by photoassociation (PA) to a coupled pair of 0u+0_u^+ states, 0u+(P1/2)0_u^+(P_{1/2}) and 0u+(P3/2)0_u^+(P_{3/2}), in the region below the 5S+5P1/25S+5P_{1/2} limit. Subsequent radiative decay produces high vibrational levels of the ground state, X1Σg+X ^1\Sigma_g^+. The population distribution of these XX state vibrational levels is monitored by resonance-enhanced two-photon ionization through the 21Σu+2 ^1\Sigma_u^+ state. We find that the populations of vibrational levels vv''=112-116 are far larger than can be accounted for by the Franck-Condon factors for 0u+(P1/2)X1Σg+0_u^+(P_{1/2}) \to X ^1\Sigma_g^+ transitions with the 0u+(P1/2)0_u^+(P_{1/2}) state treated as a single channel. Further, the ground-state molecule population exhibits oscillatory behavior as the PA laser is tuned through a succession of 0u+0_u^+ state vibrational levels. Both of these effects are explained by a new calculation of transition amplitudes that includes the resonant character of the spin-orbit coupling of the two 0u+0_u^+ states. The resulting enhancement of more deeply bound ground-state molecule formation will be useful for future experiments on ultracold molecules.Comment: 6 pages, 5 figures; corrected author lis
    corecore