1,206 research outputs found

    Microphysics and Radiative Properties of Cirrus: Instrumentation and Analysis

    Get PDF
    This section summarizes the scientific questions which originated with participation in FIRE II in Coffeyville KA, evolved through participation in several field projects related to FIRE and culminated in participation in FIRE III in the Arctic in March / May 1998. It is noted that many of the ideas generated in FIRE II 1992 - 1995 and published under the grant involving the role of CCN in cirrus formation have been followed through in this grant and have also been central in the ideas for work under the SUCCESS project and the laboratory work currently supported by NSF

    In situ aerosol optics in Reno, NV, USA during and after the summer 2008 California wildfires and the influence of absorbing and non-absorbing organic coatings on spectral light absorption

    Get PDF
    Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for the months of June and July. Comparisons are reported for aerosol optics measurements in Reno, Nevada made during the very smoky month of July and the relatively clean month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption coefficients at wavelengths of 405 nm and 870 nm, revealing a strong variation of aerosol light absorption with wavelength. Insight on fuels burned is gleaned from comparison of Ångström exponents of absorption (AEA) versus single scattering albedo (SSA) of the ambient measurements with laboratory biomass smoke measurements for many fuels. Measurements during the month of August, which were largely unaffected by fire smoke, exhibit surprisingly low AEA for aerosol light absorption when the SSA is highest, again likely as a consequence of the underappreciated wavelength dependence of aerosol light absorption by particles coated with non-absorbing organic and inorganic matter. Coated sphere calculations were used to show that AEA as large as 1.6 are possible for wood smoke even with non-absorbing organic coatings on black carbon cores, suggesting care be exercised when diagnosing AEA

    Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source

    Get PDF
    A novel multi-wavelength photoacousticnephelometer spectrometer (SC-PNS) has been developed for the optical characterization of atmospheric aerosol particles. This instrument integrates a white light supercontinuum laser with photoacoustic and nephelometric spectroscopy to measure aerosol absorption and scattering coefficients at five wavelength bands (centered at 417, 475, 542, 607, and 675 nm). These wavelength bands are selected from the continuous spectrum of the laser (ranging from 400-2200 nm) using a set of optical interference filters. Absorption and scattering measurements on laboratory-generated aerosol samples were performed sequentially at each wavelength band. To test the instrument we measured the wavelength dependence of absorption and scattering coefficients of kerosene soot and common salt aerosols. Results were favorably compared to those obtained with a commercial 3-wavelength photoacoustic and nephelometer instrument demonstrating the utility of the SC light source for studies of aerosol optical properties at selected wavelengths. Here, we discuss instrument design, development, calibration, performance and experimental results

    Cirrus microphysics observations made during FIRE 2: Small particles, high concentrations, and probe comparisons

    Get PDF
    Aircraft observations of cirrus cloud microphysics were made near Coffeyville, Kansas during Nov. and Dec. 1991. Cloud microphysics measurements were made using both a PMS 2DC probe and an ice particle replicator, both were mounted on the UND Citation aircraft. Intercomparison is made of the size, area, and ice mass spectra determined from these probes. The PMS 2DC undercounts particles for D less than 70 microns and the replicator oversizes particles for D greater than 150 microns, at least when column rosettes are encountered. High concentrations of particles with D less than 50 microns are noted in selected portions of the 22 Nov. 91 replicator data set. Relations between the maximum dimension of a crystal and its shadow area (known as area dimensional relationships) are computed from the PMS data. Area and mass dimensional relationships are used to give a simple analytical expression for computing the wavelength dependent absorption coefficient averaged over a size bin. Calculations based upon the replicator data show that crystals with D less than 50 microns contribute significantly to the solar extinction and infrared absorption coefficients during some time intervals

    Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    Get PDF
    A photoacoustic spectrometer, a nephelometer, an aethalometer, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in North East Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethalometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 07:00 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the photochemical production of secondary aerosol (inorganic and organic) is approximately 75% of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m<sup>2</sup>/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo

    Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques

    Get PDF
    International audienceSpectral aerosol light absorption is an important parameter for the assessment of the radiation budget of the atmosphere. Although on-line measurement techniques for aerosol light absorption, such as the Aethalometer and the Particle Soot Absorption Photometer (PSAP), have been available for two decades, they are limited in accuracy and spectral resolution because of the need to deposit the aerosol on a filter substrate before measurement. Recently, a 7-wavelength (?) Aethalometer became commercially available, which covers the visible (VIS) to near-infrared (NIR) spectral range (?=450?950 nm), and laboratory calibration studies improved the degree of confidence in these measurement techniques. However, the applicability of the laboratory calibration factors to ambient conditions has not been investigated thoroughly yet. As part of the LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia ? SMOke aerosols, Clouds, rainfall and Climate) campaign from September to November 2002 in the Amazon basin we performed an extensive field calibration of a 1-? PSAP and a 7-? Aethalometer utilizing a photoacoustic spectrometer (PAS, 532 nm) as reference device. Especially during the dry period of the campaign, the aerosol population was dominated by pyrogenic emissions. The most pronounced artifact of integrating-plate type attenuation techniques (e.g. Aethalometer, PSAP) is due to multiple scattering effects within the filter matrix. For the PSAP, we essentially confirmed the laboratory calibration factor by Bond et al. (1999). On the other hand, for the Aethalometer we found a multiple scattering enhancement of 5.23 (or 4.55, if corrected for aerosol scattering), which is significantly larger than the factors previously reported (~2) for laboratory calibrations. While the exact reason for this discrepancy is unknown, the available data from the present and previous studies suggest aerosol mixing (internal versus external) as a likely cause. For Amazonian aerosol, we found no absorption enhancement due to hygroscopic particle growth in the relative humidity (RH) range between 40% and 80%. However, a substantial bias in PSAP sensitivity that correlated with both RH and temperature (T) was observed for 20%RH<30% and 24°

    Brown carbon in tar balls from smoldering biomass combustion

    Get PDF
    We report the direct observation of laboratory production of spherical, carbonaceous particles- tar balls -from smoldering combustion of two commonly occurring dry mid-latitude fuels. Real-time measurements of spectrally varying absorption Ångström coefficients (AAC) indicate that a class of light absorbing organic carbon (OC) with wavelength dependent imaginary part of its refractive index-optically defined as brown carbon -is an important component of tar balls. The spectrum of the imaginary parts of their complex refractive indices can be described with a Lorentzian-like model with an effective resonance wavelength in the ultraviolet (UV) spectral region. Sensitivity calculations for aerosols containing traditional OC (no absorption at visible and UV wavelengths) and brown carbon suggest that accounting for near-UV absorption by brown carbon leads to an increase in aerosol radiative forcing efficiency and increased light absorption. Since particles from smoldering combustion account for nearly three-fourths of the total carbonaceous aerosol mass emitted globally, inclusion of the optical properties of tar balls into radiative forcing models has significance for the Earth\u27s radiation budget, optical remote sensing, and understanding of anomalous UV absorption in the troposphere

    Vertically resolved aerosol optical properties over the ARM SGP site

    Get PDF
    We will present an overview of early airborne results obtained aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRP AS) Twin Otter aircraft during the Atmospheric Radiation Measurement (ARM) program aerosol intensive observation period in May 2003

    The transition of adolescents with juvenile idiopathic arthritis or epilepsy from paediatric health-care services to adult health-care services: A scoping review of the literature and a synthesis of the evidence

    Get PDF
    Young people with long-term health conditions (LTCs) can face challenges when making the transition to adult health services. This paper sought to identify studies that assess and explore transitional care for young people with LTCs. Two conditions were used as exemplars: juvenile idiopathic arthritis (JIA) and epilepsy. A scoping review of the literature was conducted by using search terms to search for papers in English between 2001 and 2016 concerning transitional care on four databases. Qualitative papers were reviewed and synthesized using thematic analysis. Quantitative papers using health outcomes were also synthesized. Twenty-eight papers were selected for review. Despite the wealth of literature concerning aspects of transitional care that are key to a successful transition for young people with JIA or epilepsy, there is a paucity of outcomes that define ‘successful’ transition and consequently a lack of reliable research evaluating the effectiveness of transitional care interventions to support young people moving to adult health services
    • …
    corecore