369 research outputs found

    Biogeographic history of the pantropical family Gesneriaceae with a focus on the Indian plate and diversification through the Old World

    Get PDF
    The Gesneriaceae consists of around 150 genera and c. 3750 species with a predominantly tropical and subtropical distribution across all continents. Although previous studies have proposed an American origin of Gesneriaceae, the biogeographic history of this pantropical plant family is still unclear, particularly in the Old World. To address this, we assembled the most comprehensively sampled matrix of Gesneriaceae with 143 Gesneriaceae genera and 355 species, including key samples from Sri Lanka analysed here for the first time. We generated molecular phylogenies based on four plastid gene regions (ndhF, matK, rps16 and trnL-F), obtained fossil-calibrated trees, and reconstructed ancestral areas and dispersal routes using Bayesian methods. Our results confirm the origin for the family in the Early Palaeocene (67. Ma) in the region of present-day Central America & Andean South America, and that diversity in the Old World originated from a long-distance dispersal event from South America around 59 Ma, most likely to the Indian plate, which was an island at the time. This lineage then dispersed to Malesia and later East Asia, which would ultimately become a major centre of diversity and source of many dispersals to other regions. Our results thus highlight the Indian plate as a likely key player in the early diversification of Old World Gesneriaceae, even though it is now more diverse elsewhere, and hence offer novel insights into this plant family’s dispersal routes and areas of diversification in the Old World

    Artificial Neural Network Inference (ANNI): A Study on Gene-Gene Interaction for Biomarkers in Childhood Sarcomas

    Get PDF
    Objective: To model the potential interaction between previously identified biomarkers in children sarcomas using artificial neural network inference (ANNI). Method: To concisely demonstrate the biological interactions between correlated genes in an interaction network map, only 2 types of sarcomas in the children small round blue cell tumors (SRBCTs) dataset are discussed in this paper. A backpropagation neural network was used to model the potential interaction between genes. The prediction weights and signal directions were used to model the strengths of the interaction signals and the direction of the interaction link between genes. The ANN model was validated using Monte Carlo cross-validation to minimize the risk of over-fitting and to optimize generalization ability of the model. Results: Strong connection links on certain genes (TNNT1 and FNDC5 in rhabdomyosarcoma (RMS); FCGRT and OLFM1 in Ewing’s sarcoma (EWS)) suggested their potency as central hubs in the interconnection of genes with different functionalities. The results showed that the RMS patients in this dataset are likely to be congenital and at low risk of cardiomyopathy development. The EWS patients are likely to be complicated by EWS-FLI fusion and deficiency in various signaling pathways, including Wnt, Fas/Rho and intracellular oxygen. Conclusions: The ANN network inference approach and the examination of identified genes in the published literature within the context of the disease highlights the substantial influence of certain genes in sarcomas

    The Effect of Proprioceptive Feedback on the Distribution of Sensory Information in a Model of an Undulatory Organism

    Get PDF
    In an animal, a crucial factor concerning the arrival of information at the sensors and subsequent transmission to the effectors, is how it is distributed. At the same time, higher animals also employ proprioceptive feedback so that their respective neural circuits have information regarding the state of the animal body. In order to disseminate what this practically means for the distribution of sensory information, we have modeled a segmented swimming organism (animat) coevolving its nervous system and body plan morphology. In a simulated aquatic environment, we find that animats artificially endowed with proprioceptive feedback are able to evolve completely decoupled central pattern generators (CPGs) meaning that they emerge without any connections made to neural circuits in adjacent body segments. Without such feedback however, we also find that the distribution of sensory information from the head of the animat becomes far more important, with adjacent CPG circuits becoming interconnected. Crucially, this demonstrates that where proprioceptive mechanisms are lacking, more effective delivery of sensory input is essential

    A survey of orphan enzyme activities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Using computational database searches, we have demonstrated previously that no gene sequences could be found for at least 36% of enzyme activities that have been assigned an Enzyme Commission number. Here we present a follow-up literature-based survey involving a statistically significant sample of such "orphan" activities. The survey was intended to determine whether sequences for these enzyme activities are truly unknown, or whether these sequences are absent from the public sequence databases but can be found in the literature.</p> <p>Results</p> <p>We demonstrate that for ~80% of sampled orphans, the absence of sequence data is bona fide. Our analyses further substantiate the notion that many of these enzyme activities play biologically important roles.</p> <p>Conclusion</p> <p>This survey points toward significant scientific cost of having such a large fraction of characterized enzyme activities disconnected from sequence data. It also suggests that a larger effort, beginning with a comprehensive survey of all putative orphan activities, would resolve nearly 300 artifactual orphans and reconnect a wealth of enzyme research with modern genomics. For these reasons, we propose that a systematic effort to identify the cognate genes of orphan enzymes be undertaken.</p

    Phosphorylated Smad2 in Advanced Stage Gastric Carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transforming growth factor β (TGFβ) receptor signaling is closely associated with the invasion ability of gastric cancer cells. Although Smad signal is a critical integrator of TGFβ receptor signaling transduction systems, not much is known about the role of Smad2 expression in gastric carcinoma. The aim of the current study is to clarify the role of phosphorylated Smad2 (p-Smad2) in gastric adenocarcinomas at advanced stages.</p> <p>Methods</p> <p>Immunohistochemical staining with anti-p-Smad2 was performed on paraffin-embedded specimens from 135 patients with advanced gastric adenocarcinomas. We also evaluated the relationship between the expression levels of p-Smad2 and clinicopathologic characteristics of patients with gastric adenocarcinomas.</p> <p>Results</p> <p>The p-Smad2 expression level was high in 63 (47%) of 135 gastric carcinomas. The p-Smad2 expression level was significantly higher in diffuse type carcinoma (p = 0.007), tumours with peritoneal metastasis (p = 0.017), and tumours with lymph node metastasis (p = 0.047). The prognosis for p-Smad2-high patients was significantly (p = 0.035, log-rank) poorer than that of p-Smad2-low patients, while a multivariate analysis revealed that p-Smad2 expression was not an independence prognostic factor.</p> <p>Conclusion</p> <p>The expression of p-Smad2 is associated with malignant phenotype and poor prognosis in patients with advanced gastric carcinoma.</p

    Early gene expression changes with rush immunotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To examine whether whole genome expression profiling could reveal changes in mRNA expression of peripheral blood mononuclear cells (PBMC) from allergic patients undergoing rush immunotherapy (RIT) that might be manifest within the first few months of treatment.</p> <p>Methods</p> <p>For this study, PBMC from three allergic patients undergoing RIT were assessed at four timepoints: prior to RIT, at 1 week and 7 week post-RIT, during build-up and at 4 months, after establishment of a maintenance dose. PBMC mRNA gene expression changes over time were determined by oligonucleotide microarrays using the Illumina Human-6 BeadChip Platform, which simultaneously interrogates expression profiles of > 47,000 transcripts. Differentially expressed genes were identified using well-established statistical analysis for microarrays. In addition, we analyzed peripheral blood basophil high-affinity IgE receptor (Fc epsilon RI) expression and T-regulatory cell frequency as detected by expression of CD3<sup>+</sup>CD4<sup>+</sup>CD25bright cells at each timepoint using flow cytometry.</p> <p>Results</p> <p>In comparing the initial 2 timepoints with the final 2 timepoints and analyzing for genes with ≥1.5-fold expression change (p less than or equal to 0.05, BH-FDR), we identified 507 transcripts. At a 2-fold change (p less than or equal to 0.05, BH-FDR), we found 44 transcripts. Of these, 28 were up-regulated and 16 were down-regulated genes. From these datasets, we have identified changes in immunologically relevant genes from both the innate and adaptive response with upregulation of expressed genes for molecules including IL-1β, IL-8, CD40L, BTK and BCL6. At the 4 month timepoint, we noted a downward trend in Fc epsilon RI expression in each of the three patients and increased allergen-specific IgG4 levels. No change was seen in the frequency of peripheral T-regulatory cells expressed over the four timepoints.</p> <p>Conclusions</p> <p>We observed significant changes in gene expression early in peripheral blood samples from allergic patients undergoing RIT. Moreover, serum levels for allergen specific IgG4 also increased over the course of treatment. These studies suggest that RIT induces rapid and dynamic alterations in both innate and adaptive immunity which can be observed in the periphery of allergic patients. These alterations could be directly related to the therapeutic shift in the allergen-specific class of immunoglobulin.</p

    The Inactivation Principle: Mathematical Solutions Minimizing the Absolute Work and Biological Implications for the Planning of Arm Movements

    Get PDF
    An important question in the literature focusing on motor control is to determine which laws drive biological limb movements. This question has prompted numerous investigations analyzing arm movements in both humans and monkeys. Many theories assume that among all possible movements the one actually performed satisfies an optimality criterion. In the framework of optimal control theory, a first approach is to choose a cost function and test whether the proposed model fits with experimental data. A second approach (generally considered as the more difficult) is to infer the cost function from behavioral data. The cost proposed here includes a term called the absolute work of forces, reflecting the mechanical energy expenditure. Contrary to most investigations studying optimality principles of arm movements, this model has the particularity of using a cost function that is not smooth. First, a mathematical theory related to both direct and inverse optimal control approaches is presented. The first theoretical result is the Inactivation Principle, according to which minimizing a term similar to the absolute work implies simultaneous inactivation of agonistic and antagonistic muscles acting on a single joint, near the time of peak velocity. The second theoretical result is that, conversely, the presence of non-smoothness in the cost function is a necessary condition for the existence of such inactivation. Second, during an experimental study, participants were asked to perform fast vertical arm movements with one, two, and three degrees of freedom. Observed trajectories, velocity profiles, and final postures were accurately simulated by the model. In accordance, electromyographic signals showed brief simultaneous inactivation of opposing muscles during movements. Thus, assuming that human movements are optimal with respect to a certain integral cost, the minimization of an absolute-work-like cost is supported by experimental observations. Such types of optimality criteria may be applied to a large range of biological movements

    Periprosthetic DXA after total hip arthroplasty with short vs. ultra-short custom-made femoral stems

    Get PDF
    Background and purpose Dual-energy X-ray absorptiometry (DXA) analysis of the 7 periprosthetic Gruen zones is the most commonly used protocol to evaluate bone remodeling after the implantation of conventional femoral stems. We assessed the value of DXA after cementless primary total hip arthroplasty (THA) by comparing the effect of progressive shortening of the stem of two femoral implants on periprosthetic bone remodeling using a specifically developed protocol of analysis with 5 periprosthetic regions of interest (ROIs)
    corecore