40,781 research outputs found

    Individualism-collectivism and interpersonal memory guidance of attention

    Get PDF
    Recently it has been shown that the allocation of attention by a participant in a visual search task can be affected by memory items that have to be maintained by a co-actor, when similar tasks are jointly engaged by dyads (He, Lever, & Humphreys, 2011). In the present study we examined the contribution of individualism-collectivism to this ‘interpersonal memory guidance’ effect. Actors performed visual search while a preview image was either held by the critical participant, held by a co-actor or was irrelevant to either participant. Attention during search was attracted to stimuli that matched the contents of the co-actor’s memory. This interpersonal effect correlated with the collectivism scores, and was enhanced by priming with a collectivistic scenario. The dimensions of individualism, however, did not contribute to performance. These data suggest that collectivism, but not individualism, modulates interpersonal influences on memory and attention in joint action

    A new atmospheric aerosol phase equilibrium model (UHAERO): organic systems

    Get PDF
    In atmospheric aerosols, water and volatile inorganic and organic species are distributed between the gas and aerosol phases in accordance with thermodynamic equilibrium. Within an atmospheric particle, liquid and solid phases can exist at equilibrium. Models exist for computation of phase equilibria for inorganic/water mixtures typical of atmospheric aerosols; when organic species are present, the phase equilibrium problem is complicated by organic/water interactions as well as the potentially large number of organic species. We present here an extension of the UHAERO inorganic thermodynamic model (Amundson et al., 2006c) to organic/water systems. Phase diagrams for a number of model organic/water systems characteristic of both primary and secondary organic aerosols are computed. Also calculated are inorganic/organic/water phase diagrams that show the effect of organics on inorganic deliquescence behavior. The effect of the choice of activity coefficient model for organics on the computed phase equilibria is explored

    A computationally efficient inorganic atmospheric aerosol phase equilibrium model (UHAERO)

    Get PDF
    A variety of thermodynamic models have been developed to predict inorganic gas-aerosol equilibrium. To achieve computational efficiency a number of the models rely on a priori specification of the phases present in certain relative humidity regimes. Presented here is a new computational model, named UHAERO, that is both efficient and rigorously computes phase behavior without any a priori specification. The computational implementation is based on minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. The mathematical details of the solution are given elsewhere. The model also computes deliquescence and crystallization behavior without any a priori specification of the relative humidities of deliquescence or crystallization. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system are presented as a function of relative humidity at 298.15 K over the complete space of composition

    A new inorganic atmospheric aerosol phase equilibrium model (UHAERO)

    Get PDF
    A variety of thermodynamic models have been developed to predict inorganic gas-aerosol equilibrium. To achieve computational efficiency a number of the models rely on a priori specification of the phases present in certain relative humidity regimes. Presented here is a new computational model, named UHAERO, that is both efficient and rigorously computes phase behavior without any a priori specification. The computational implementation is based on minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. The mathematical details of the solution are given elsewhere. The model computes deliquescence behavior without any a priori specification of the relative humidities of deliquescence. Also included in the model is a formulation based on classical theory of nucleation kinetics that predicts crystallization behavior. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system are presented as a function of relative humidity at 298.15 K over the complete space of composition

    Spin photocurrent, its spectra dependence, and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas

    Full text link
    Converse effect of spin photocurrent and current induced spin polarization are experimentally demonstrated in the same two-dimensional electron gas system with Rashba spin splitting. Their consistency with the strength of the Rashba coupling as measured from beating of the Shubnikov-de Haas oscillations reveals a unified picture for the spin photocurrent, current-induced spin polarization and spin orbit coupling. In addition, the observed spectral inversion of the spin photocurrent indicates the system with dominating structure inversion asymmetry.Comment: 13 pages, 4 figure

    Charge-ordering, commensurability and metallicity in the phase diagram of layered Na(x)CoO(2)

    Full text link
    The phase diagram of non-hydrated Na(x)CoO(2) has been determined by changing the Na content x using a series of chemical reactions. As x increases from 0.3, the ground state goes from a paramagnetic metal to a charge-ordered insulator (at x=1/2) to a `Curie-Weiss metal' (around 0.70), and finally to a weak-moment magnetically ordered state (x>0.75). The unusual properties of the state at 1/2 (including particle-hole symmetry at low T and enhanced thermal conductivity) are described. The strong coupling between the Na ions and the holes is emphasized.Comment: 4 pages with 3 figures, changed conten

    Image translation and rotation on hexagonal structure

    Full text link
    Image translation and rotation are becoming essential operations in many application areas such as image processing, computer graphics and pattern recognition. Conventional translation moves image from pixels to pixels and conventional rotation usually comprises of computation-intensive CORDIC operations. Traditionally, images are represented on a square pixel structure. In this paper, we perform reversible and fast image translation and rotation based on a hexagonal structure. An image represented on the hexagonal structure is a collection of hexagonal pixels of equal size. The hexagonal structure provides a more flexible and efficient way to perform image translation and rotation without losing image information. As there is not yet any available hardware for capturing image and for displaying image on a hexagonal structure, we apply a newly developed virtual hexagonal structure. The virtual hexagonal structure retains image resolution during the process of image transformations, and almost does not introduce distortion. Furthermore, images can be smoothly and easily transferred between the traditional square structure and the hexagonal structure. © 2006 IEEE

    Super and Sub-Poissonian photon statistics for single molecule spectroscopy

    Full text link
    We investigate the distribution of the number of photons emitted by a single molecule undergoing a spectral diffusion process and interacting with a continuous wave laser field. The spectral diffusion is modeled based on a stochastic approach, in the spirit of the Anderson-Kubo line shape theory. Using a generating function formalism we solve the generalized optical Bloch equations, and obtain an exact analytical formula for the line shape and Mandel's Q parameter. The line shape exhibits well known behaviors, including motional narrowing when the stochastic modulation is fast, and power broadening. The Mandel parameter, describing the line shape fluctuations, exhibits a transition from a Quantum sub-Poissonian behavior in the fast modulation limit, to a classical super-Poissonian behavior found in the slow modulation limit. Our result is applicable for weak and strong laser field, namely for arbitrary Rabi frequency. We show how to choose the Rabi frequency in such a way that the Quantum sub-Poissonian nature of the emission process becomes strongest. A lower bound on QQ is found, and simple limiting behaviors are investigated. A non-trivial behavior is obtained in the intermediate modulation limit, when the time scales for spectral diffusion and the life time of the excited state, become similar. A comparison is made between our results, and previous ones derived based on the semi-classical generalized Wiener--Khintchine theorem.Comment: 14 Phys. Rev style pages, 10 figure

    Vibration suppression and angle tracking of a fire-rescue ladder

    Get PDF
    This paper mainly considers vibration suppression and angle tracking of a fire-rescue ladder system. The dynamical model is regarded as a segmented Euler–Bernoulli beam with gravity and tip mass, described by a set of motion equations and boundary conditions. Based on the nonlinear Euler–Bernoulli beam model, two active boundary controllers are proposed to achieve the control objectives. The elastic deflection and the angular error in the closed-loop system are proven to converge exponentially to a small neighborhood of zero. Numerical simulations based on finite difference method verify the effectiveness and the ascendancy of active boundary controllers
    corecore