83 research outputs found

    Neptunium Reactivity During Co-Precipitation and Oxidation of Fe(II)/Fe(III) (Oxyhydr)oxides

    Get PDF
    Fe(II) bearing iron (oxyhydr)oxides were directly co-precipitated with Np(V)O2+ under anaerobic conditions to form Np doped magnetite and green rust. These environmentally relevant mineral phases were then characterised using geochemical and spectroscopic analyses. The Np doped mineral phases were then oxidised in air over 224 days with solution chemistry and end-point oxidation solid samples collected for further characterisation. Analysis using chemical extractions and X-ray absorption spectroscopy (XAS) techniques confirmed that Np(V) was initially reduced to Np(IV) during co-precipitation of both magnetite and green rust. Extended X-Ray Absorption Fine Structure (EXAFS) modelling suggested the Np(IV) formed a bidentate binuclear sorption complex to both minerals. Furthermore, following oxidation in air over several months, the sorbed Np(IV) was partially oxidised to Np(V), but very little remobilisation to solution occurred during oxidation. Here, linear combination fitting of the X-Ray Absorption Near Edge Structure (XANES) for the end-point oxidation samples for both mineral phases suggested approximately 50% oxidation to Np(V) had occurred over 7 months of oxidation in air. Both the reduction of Np(V) to Np(IV) and inner sphere sorption in association with iron (oxyhydr)oxides, and the strong retention of Np(IV) and Np(V) species with these phases under robust oxidation conditions, have important implications in understanding the mobility of neptunium in a range of engineered and natural environments

    Neptunium Reactivity During Co-Precipitation and Oxidation of Fe(II)/Fe(III) (Oxyhydr)oxides

    Get PDF
    Fe(II) bearing iron (oxyhydr)oxides were directly co-precipitated with Np(V)O2+ under anaerobic conditions to form Np doped magnetite and green rust. These environmentally relevant mineral phases were then characterised using geochemical and spectroscopic analyses. The Np doped mineral phases were then oxidised in air over 224 days with solution chemistry and end-point oxidation solid samples collected for further characterisation. Analysis using chemical extractions and X-ray absorption spectroscopy (XAS) techniques confirmed that Np(V) was initially reduced to Np(IV) during co-precipitation of both magnetite and green rust. Extended X-Ray Absorption Fine Structure (EXAFS) modelling suggested the Np(IV) formed a bidentate binuclear sorption complex to both minerals. Furthermore, following oxidation in air over several months, the sorbed Np(IV) was partially oxidised to Np(V), but very little remobilisation to solution occurred during oxidation. Here, linear combination fitting of the X-Ray Absorption Near Edge Structure (XANES) for the end-point oxidation samples for both mineral phases suggested approximately 50% oxidation to Np(V) had occurred over 7 months of oxidation in air. Both the reduction of Np(V) to Np(IV) and inner sphere sorption in association with iron (oxyhydr)oxides, and the strong retention of Np(IV) and Np(V) species with these phases under robust oxidation conditions, have important implications in understanding the mobility of neptunium in a range of engineered and natural environments

    Soil bacteria override speciation effects on zinc phytotoxicity in zinc-contaminated soils

    Get PDF
    The effects of zinc (Zn) speciation on plant growth in Zn-contaminated soil in the presence of bacteria are unknown but are critical to our understanding of metal biodynamics in the rhizosphere where bacteria are abundant. A 6-week pot experiment investigated the effects of two plant growth promoting bacteria (PGPB), <i>Rhizobium leguminosarum</i> and <i>Pseudomonas brassicacearum</i>, on Zn accumulation and speciation in <i>Brassica juncea</i> grown in soil amended with 600 mg kg<sup>–1</sup> elemental Zn as three Zn species: soluble ZnSO<sub>4</sub> and nanoparticles of ZnO and ZnS. Measures of plant growth were higher across all Zn treatments inoculated with PGPB compared to uninoculated controls, but Zn species effects were not significant. Transmission electron microscopy identified dense particles in the epidermis and intracellular spaces in roots, suggesting Zn uptake in both dissolved and particulate forms. X-ray absorption near-edge structure (XANES) analysis of roots revealed differences in Zn speciation between treatments. Uninoculated plants exposed to ZnSO<sub>4</sub> contained Zn predominantly in the form of Zn phytate (35%) and Zn polygalacturonate (30%), whereas Zn cysteine (57%) and Zn polygalacturonate (37%) dominated in roots exposed to ZnO nanoparticles. Inoculation with PGPB increased (>50%) the proportion of Zn cysteine under all Zn treatments, suggesting Zn coordination with cysteine as the predominant mechanism of Zn toxicity reduction by PGPB. Using this approach, we show, for the first time, that although speciation is important, the presence of rhizospheric bacteria completely overrides speciation effects such that most of the Zn in plant tissue exists as complexes other than the original form

    How does iron interact with sporopollenin exine capsules? An X-ray absorption study including microfocus XANES and XRF imaging

    Get PDF
    Sporopollenin exine capsules (SECs) derived from plant spores and pollen grains have been proposed as adsorption, remediation and drug delivery agents. Despite many studies there is scant structural data available. This X-ray absorption investigation represents the first direct structural data on the interaction of metals with SECs and allows elucidation of their structure–property relationships. Fe K-edge XANES and EXAFS data have shown that the iron local environment in SECs (derived from Lycopodium clavatum) reacted with aqueous ferric chloride solutions is similar to that of ferrihydrite (FeOOH) and by implication ferritin. Fe Kα XRF micro-focus experiments show that there is a poor correlation between the iron distribution and the underlying SEC structure indicating that the SEC is coated in the FeOOH material. In contrast, the Fe Kα XRF micro-focus experiments on SECs reacted with aqueous ferrous chloride solutions show that there is a very high correlation between the iron distribution and the SEC structure, indicating a much more specific form of interaction of the iron with the SEC surface functional groups. Fe K-edge XANES and EXAFS data show that the FeII can be easily oxidised to give a structure similar to, but not identical to that in the FeIII case, and that even if anaerobic conditions are used there is still partial oxidation to FeIII

    Controls on the fate and speciation of Np(V) during iron (oxyhydr)oxide crystallization

    Get PDF
    The speciation and fate of neptunium as Np(V)O2+ during the crystallization of ferrihydrite to hematite and goethite was explored in a range of systems. Adsorption of NpO2+ to iron(III) (oxyhydr)oxide phases was reversible and, for ferrihydrite, occurred through the formation of mononuclear bidentate surface complexes. By contrast, chemical extractions and X-ray absorption spectroscopy (XAS) analyses showed the incorporation of Np(V) into the structure of hematite during its crystallization from ferrihydrite (pH 10.5). This occurred through direct replacement of octahedrally coordinated Fe(III) by Np(V) in neptunate-like coordination. Subsequent analyses on mixed goethite and hematite crystallization products (pH 9.5 and 11) showed that Np(V) was incorporated during crystallization. Conversely, there was limited evidence for Np(V) incorporation during goethite crystallization at the extreme pH of 13.3. This is likely due to the formation of a Np(V) hydroxide precipitate preventing incorporation into the goethite particles. Overall these data highlight the complex behavior of Np(V) during the crystallization of iron(III) (oxyhydr)oxides, and demonstrate clear evidence for neptunium incorporation into environmentally important mineral phases. This extends our knowledge of the range of geochemical conditions under which there is potential for long-term immobilization of radiotoxic Np in natural and engineered environments

    Incorporation and retention of 99-Tc(IV) in magnetite under high pH conditions

    Get PDF
    Technetium incorporation into magnetite and its behavior during subsequent oxidation has been investigated at high pH to determine the technetium retention mechanism(s) on formation and oxidative perturbation of magnetite in systems relevant to radioactive waste disposal. Ferrihydrite was exposed to Tc(VII)(aq) containing cement leachates (pH 10.5-13.1), and crystallization of magnetite was induced via addition of Fe(II)aq. A combination of X-ray diffraction (XRD), chemical extraction, and X-ray absorption spectroscopy (XAS) techniques provided direct evidence that Tc(VII) was reduced and incorporated into the magnetite structure. Subsequent air oxidation of the magnetite particles for up to 152 days resulted in only limited remobilization of the incorporated Tc(IV). Analysis of both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data indicated that the Tc(IV) was predominantly incorporated into the magnetite octahedral site in all systems studied. On reoxidation in air, the incorporated Tc(IV) was recalcitrant to oxidative dissolution with less than 40% remobilization to solution despite significant oxidation of the magnetite to maghemite/goethite: All solid associated Tc remained as Tc(IV). The results of this study provide the first direct evidence for significant Tc(IV) incorporation into the magnetite structure and confirm that magnetite incorporated Tc(IV) is recalcitrant to oxidative dissolution. Immobilization of Tc(VII) by reduction and incorporation into magnetite at high pH and with significant stability upon reoxidation has clear and important implications for limiting technetium migration under conditions where magnetite is formed including in geological disposal of radioactive wastes

    Mixed planting with a leguminous plant outperforms bacteria in promoting growth of a metal remediating plant through histidine synthesis

    Get PDF
    <p>The effectiveness of plant growth promoting bacteria (PGPB) in improving metal phytoremediation is still limited by stunted plant growth under high soil metal concentrations. Meanwhile, mixed planting with leguminous plants is known to improve yield in nutrient deficient soils but the use of a metal tolerant legume to enhance metal tolerance of a phytoremediator has not been explored. We compared the use of <i>Pseudomonas brassicacearum, Rhizobium leguminosarum</i>, and the metal tolerant leguminous plant<i> Vicia sativa</i> to promote the growth of <i>Brassica juncea</i> in soil contaminated with 400 mg Zn kg<sup>–1</sup>, and used synchrotron based microfocus X-ray absorption spectroscopy to probe Zn speciation in plant roots.<i> B. juncea </i>grew better when planted with <i>V. sativa</i> than when inoculated with PGPB. By combining PGPB with mixed planting,<i> B. juncea</i> recovered full growth while also achieving soil remediation efficiency of >75%, the maximum ever demonstrated for <i>B. juncea.</i> μXANES analysis of <i>V. sativa</i> suggested possible root exudation of the Zn chelates histidine and cysteine were responsible for reducing Zn toxicity. We propose the exploration of a legume-assisted-phytoremediation system as a more effective alternative to PGPB for Zn bioremediation.</p

    Improving our understanding of metal implant failures: Multiscale chemical imaging of exogenous metals in ex-vivo biological tissues

    Get PDF
    Biological exposures to micro- and nano-scale exogenous metal particles generated as a consequence of in-service degradation of orthopaedic prosthetics can result in severe adverse tissues reactions. However, individual reactions are highly variable and are not easily predicted, due to in part a lack of understanding of the speciation of the metal-stimuli which dictates cellular interactions and toxicity. Investigating the chemistry of implant derived metallic particles in biological tissue samples is complicated by small feature sizes, low concentrations and often a heterogeneous speciation and distribution. These challenges were addressed by developing a multi-scale two-dimensional X-ray absorption spectroscopic (XAS) mapping approach to discriminate sub-micron changes in particulate chemistry within ex-vivo tissues associated with failed CoCrMo total hip replacements (THRs). As a result, in the context of THRs, we demonstrate much greater variation in Cr chemistry within tissues compared with previous reports. Cr compounds including phosphate, hydroxide, oxide, metal and organic complexes were observed and correlated with Co and Mo distributions. This variability may help explain the lack of agreement between biological responses observed in experimental exposure models and clinical outcomes. The multi-scale 2D XAS mapping approach presents an essential tool in discriminating the chemistry in dilute biological systems where speciation heterogeneity is expected. Significance: Metal implants are routinely used in healthcare but may fail following degradation in the body. Although specific implants can be identified as ‘high-risk’, our analysis of failures is limited by a lack of understanding of the chemistry of implant metals within the peri-prosthetic milieu. A new approach to identify the speciation and variability in speciation at sub-micron resolution, of dilute exogenous metals within biological tissues is reported; applied to understanding the failure of metallic (CoCrMo) total-hip-replacements widely used in orthopedic surgery. Much greater variation in Cr chemistry was observed compared with previous reports and included phosphate, hydroxide, oxide, metal and organic complexes. This variability may explain lack of agreement between biological responses observed in experimental exposure models and clinical outcomes

    Implications of X-ray beam profiles on qualitative and quantitative synchrotron micro-focus X-ray fluorescence microscopy

    Get PDF
    Synchrotron radiation X-ray fluorescence microscopy is frequently used to investigate the spatial distribution of elements within a wide range of samples. Interrogation of heterogeneous samples that contain large concentration ranges has the potential to produce image artefacts due to the profile of the X-ray beam. The presence of these artefacts and the distribution of flux within the beam profile can significantly affect qualitative and quantitative analyses. Two distinct correction methods have been generated by referencing the beam profile itself or by employing an adaptive-thresholding procedure. Both methods significantly improve qualitative imaging by removing the artefacts without compromising the low-intensity features. The beam-profile correction method improves quantitative results but requires accurate two-dimensional characterization of the X-ray beam profile
    • …
    corecore