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Abstract 19 

The effects of zinc (Zn) speciation on plant growth in Zn-contaminated soil in the presence of 20 

bacteria are unknown but are critical to our understanding of metal biodynamics in the 21 

rhizosphere where bacteria are abundant. A 6-week pot experiment investigated the effects 22 

of two plant growth promoting bacteria (PGPB), Rhizobium leguminosarum and Pseudomonas 23 

brassicacearum, on Zn accumulation and speciation in Brassica juncea grown in soil amended 24 

with 600 mg kg-1 elemental Zn as three Zn species - soluble ZnSO4 and nanoparticles of ZnO 25 
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and ZnS. Measures of plant growth were higher across all Zn treatments inoculated with PGPB 26 

compared to uninoculated controls but Zn species effects were not significant. Transmission 27 

electron microscopy identified dense particles in the epidermis and intracellular spaces in 28 

roots, suggesting Zn uptake in both dissolved and particulate forms. X-ray absorption near 29 

edge structure (XANES) analysis of roots revealed differences in Zn speciation between 30 

treatments. Uninoculated plants exposed to ZnSO4 contained Zn predominantly in the form 31 

of Zn phytate (35%), and Zn polygalacturonate (30%), whereas Zn cysteine (57%) and Zn 32 

polygalacturonate (37%) dominated in roots exposed to ZnO nanoparticles. Inoculation with 33 

PGPB increased (> 50%) the proportion of Zn cysteine under all Zn treatments, suggesting Zn 34 

co-ordination with cysteine as the predominant mechanism of Zn toxicity reduction by PGPB. 35 

Using this approach we show, for the first time, that although speciation is important, the 36 

presence of rhizospheric bacteria completely overrides speciation effects such that most of 37 

the Zn in plant tissue exists as complexes other than the original form. 38 

Key words 39 

Speciation, zinc, nanoparticles, plant growth promoting bacteria, phytoextraction, XANES 40 

Introduction 41 

Models of metal uptake by, and toxicity to organisms, including the Free Ion Activity Model 42 

(FIAM)1 and the Biotic Ligand Model (BLM),2 are rooted in the long established dependence of 43 

metal bioavailability on speciation in solution. Development of similarly predictive models for 44 

solid phases, such as may exist in soil, has not been possible, in part due to the complexity of 45 

solid phase speciation, which involves associations with minerals of differing solubilities 46 

and/or redox activities. This has led to a proliferation of operational speciation schemes for 47 

estimating potential metal uptake and toxicity. The emergence of nanotechnology has 48 
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provided opportunities to advance model development through access to nanoparticles with 49 

enhanced solubilities and the potential for direct absorption by organisms. As a result, biotic 50 

ligand models are now being tested for their ability to predict metal toxicity from 51 

nanoparticulate phases to daphnids and annelids.3 Preliminary indications are that the 52 

biodynamics of nanoparticles depend on the mode of uptake (dissolved versus 53 

nanoparticulate) by the organism. 54 

Biotic ligand models have also been used to predict metal uptake by and toxicity to 55 

plants, as demonstrated by chloride-enhanced cadmium uptake by Brassica juncea.4 In order 56 

to extend this approach to nanoparticles biodynamics, it is necessary to understand 57 

how/whether nanoparticles uptake differs from dissolved metal uptake by plants. Although a 58 

number of previous studies have shown that speciation is an important factor in determining 59 

metal bioavailability and toxicity to plants,5,6 there is less of a consensus on the mode of metal 60 

uptake from nanoparticles. For example, some studies have reported the accumulation of 61 

ZnO nanoparticles in plant roots7,8 whereas others9-11 did not find ZnO nanoparticles in plants 62 

treated with ZnO nanoparticles, suggesting that nanoparticle metal species are transformed 63 

into other soluble species after plant uptake. 64 

The aim of this study was to evaluate the role of Zn speciation on its uptake by, and 65 

toxicity to Brassica juncea grown in soil contaminated with 600 mg kg-1 equivalent Zn. Zinc 66 

was chosen because it is a widespread metallic soil contaminant with anthropogenic sources 67 

including mine tailings, smelter slags, and fertilizers.12 Following release, Zn predominantly 68 

occurs in soil as sphalerite (ZnS) and zincite (ZnO).13 These two forms of Zn are also widely 69 

used in engineered nanomaterials within gas sensors, ultraviolet detectors, photovoltaic 70 

devices and personal care products,14,15 leading to potential release in the environment, 71 

which may alter the soil-plant system.16-18 Although Zn is vital for plant health, with up to 30% 72 
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of cultivated soils globally having low phytoavailable Zn, resulting in Zn deficiency in soils and 73 

plants,19 excess Zn can be detrimental, inducing physiological, morphological and biochemical 74 

dysfunctions in plants such as impaired plant growth, reduced chlorophyll and seed 75 

production, and development of chlorosis and necrosis.20,21  Brassica juncea (L.) Czern. was 76 

chosen for this study as a known Zn hyperaccumulator22-24 which nevertheless is sensitive to 77 

Zn at high concentrations, and is thus suitable for investigating the bioavailability and toxicity 78 

of Zn species present in soil.23  Besides primary Zn speciation, we also investigated the role of 79 

rhizospheric bacteria. Rhizosphere-associated microorganisms are naturally occurring 80 

microbes growing in association with plant roots and are known to change metal speciation, 81 

increase metal solubility, and act additively on plant health,25-27 through secretion of 82 

phytohormones,28 production of chelators,29 acidification and biomineralization.30  83 

The objectives of this study were to: (i) assess the role of Zn speciation on growth of 84 

Brassica juncea; (ii) investigate the role of rhizospheric bacteria on growth of B. juncea 85 

exposed to different Zn species; (iii) compare Zn uptake and accumulation between 86 

inoculated and uninoculated plants; and (iv) evaluate Zn speciation in inoculated and 87 

uninoculated roots of B. juncea exposed to different Zn species.  88 

 89 

 90 

2 Materials and Methods 91 

2.1 Selection of materials and preliminary materials characterization 92 

Brassica juncea (L.) Czern was chosen for this study as a demonstrated excellent 93 

hyperaccumulating plant known to tolerate and accumulate high amounts of metal in their 94 
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living aboveground biomass.22-24   Seeds were purchased from Sow Seeds Ltd., UK, and stored 95 

in a plastic bag in the dark at temperature 14 -16°C until use.  96 

Zinc sulfate and ZnO nanoparticles (particle size <35 nm) were purchased from Sigma 97 

Aldrich, UK, and stored according to vendor instructions, while ZnS nanoparticles were 98 

synthesized in our laboratory using a chemical precipitation method.31 ZnS nanoparticles 99 

were made from 1 M aqueous solutions of Na2S and ZnCl2. The morphology of ZnO 100 

nanoparticles and ZnS nanoparticles were characterized using transmission electron 101 

microscopy (TEM, Philips CM120 instrument), while ZnS nanoparticles structure was 102 

determined by X-ray diffraction (XRD, Bruker D2 PHASER diffractometer). For the latter, 0.1 g 103 

of dry powdered ZnS sample was measured on a Bruker D2 PHASER diffractometer fitted with 104 

a LynxEye detector and operating in a flat plate mode using Ni-filtered Cu K-alpha radiation 105 

(λ= 1.54060 Ǻ) (start: 5o; end: 90o; time per step: 0.3 s). The crystallite size was calculated 106 

from the Debye-Scherrer formula (Eq. 1),32  107 

𝐷 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
       (𝐸𝑞. 1) 108 

where D is the mean diameter of the crystallite (nm), k is a constant related to the 109 

dimensionless shape (0.94), λ is the X-ray wavelength (Å), β is the full width at half the 110 

maximum intensity (radians, r) and θ is the corresponding diffraction angle (o). 111 

Further characterization of ZnO and ZnS nanoparticles involved conducting a 4-day 112 

dissolution experiment in ultrapure water starting with a nominal concentration of 600 mg L-113 

1 elemental Zn, consistent with the Zn dose in the experimental soil (details in Supporting 114 

Information S5). Microcosms were set up in duplicate, and sampled once per day using a 115 

syringe followed by centrifugal filtration through a 3 kD pore filter for 30 min at 5,000 x g. The 116 
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filtrate was acidified to 2% in HNO3 acid and analyzed for dissolved Zn using ICP-OES alongside 117 

a certified ICP multi-element standard solution VI (Merck). 118 

Soil amended with peat has been reported to influence metal speciation by modifying 119 

metal mobility and availability due to a high organic matter content.33 Organic matter can also 120 

influence sulfur speciation and, since ZnS was one of the Zn forms used in the study, soils 121 

containing peat were avoided. Instead, unamended topsoil (Westland topsoil, Dobbies 122 

Garden Centre, Edinburgh, UK) was used to represent an environmentally relevant soil 123 

containing all the nutrients required for plant growth. Measured soil physicochemical 124 

properties are reported in Supporting Information S1. 125 

 126 

2.2 Pot experiments  127 

Pot experiments were conducted using sterilized (134oC for 4 min in a BMM Weston 128 

autoclave) air-dried soil contaminated with 600 mg Zn kg-1 of ZnSO4, ZnS and ZnO 129 

nanoparticles. The Zn concentration chosen was 600 mg Zn kg-1   which was sufficient to trigger 130 

toxic effects in plants34,35 without completely curtailing growth. For the nanoparticles, an 131 

appropriate amount of nanoparticles required to spike 9 kg of soil with equivalent 600 mg kg-132 

1 elemental Zn was dissolved in ultrapure water and dispersed by sonication (Decon Fs 200b 133 

sonicator, 30oC) for 1 hr using the procedure of Lin and Xing.7 Following sonication, the 134 

suspension was transferred to the soil and mixed by hand for 1 h to produce a homogeneously 135 

mixed soil.  Each 2.15 L pot contained 1 kg of spiked (ZnSO4, ZnO and ZnS) or un-spiked soil 136 

(control) and equilibrated for 1 week before planting (see Supporting Information S2). 137 

Inoculation was conducted through treatment of Brassica juncea seeds as follows. Seeds were 138 

surface sterilized with 5% NaClO for 15 min and washed three times with sterile deionized 139 

water. Seeds were soaked for 4 h in 10 mL bacteria suspension (Rhizobium leguminosarum 140 
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bv. trifolii or Pseudomonas brassicacearum) and uninoculated seeds were soaked in sterilized 141 

deionized water over the same duration before sowing five seeds in each pot (Supporting 142 

Information S2). The experiments were conducted in a greenhouse at the School of Biological 143 

Sciences, University of Edinburgh, with mean 21°C daytime and 18°C night-time 144 

temperatures, and artificial lighting providing a photoperiod of 18 h d−1 and photo levels of 145 

∼150 μmol m−2 s−1.  Although the greenhouse is a non-sterile environment, we reasoned that 146 

environmental microbes within the greenhouse will colonize all treatments equally so initial 147 

sterilization of the soil simply provided a baseline reference point. Pot experiments 148 

(Supporting Information S2) contained 12 triplicate treatments (including controls), in which 149 

Brassica juncea were grown with and without the presence of bacteria and were distributed 150 

randomly in the greenhouse.  All plants were harvested 6 weeks after planting of seeds.     151 

2.3 Plant sampling and bioaccumulation analysis 152 

Metal-related phytotoxicity was evaluated by measuring weekly plant height, dry biomass at 153 

the end of the experiment (6 weeks after seed planting), and through other observations such 154 

as leaf chlorosis and necrosis. Total Zn concentrations in duplicate sub-samples of the ground 155 

plant materials and soil (batched for each treatment from the 3 replicate pots) were 156 

determined as described by Allen et al.36 (6 mL concentrated HCl and 1 mL HNO3 were used 157 

for digestion of 0.5 g ashed soil samples and 2 mL concentrated H2SO4 and 0.75 mL H2O2 (30%) 158 

for digestion of 0.1 g plant material samples). Zn concentrations in the digests were 159 

determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) (Perkin 160 

Elmer Optima 5300DV). Zn contents were expressed as mg kg-1 (dry weight) as single values 161 

for each treatment and used to evaluate Zn uptake by the plant, by calculating 162 
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bioaccumulation factors (BCF), translocation factors (TF) and phytoextraction efficiency (PE) 163 

as detailed in Supporting Information S3. 164 

 165 

2.4 Synchrotron based X-ray spectroscopic (XAS) analysis  166 

Using fresh plants grown in the same way, µXRF (micro X-ray fluorescence) and µXAS 167 

measurements of roots and shoots of B. juncea were studied in a liquid nitrogen cryostat on 168 

beamline I18 at Diamond Light Source, Oxford, United Kingdom37 (details in Supporting 169 

Information S4). The XRF maps were analysed in PyMCA 4.4.1 software.38 MicroXANES Zn K-170 

edge data were compared to spectra from a range of standards23 using the program 171 

ATHENA.39 Zn standards comprised ZnS nanoparticles, Zn oxalate, Zn phosphate, Zn histidine, 172 

Zn cysteine, Zn phytate, Zn formate, Zn polygalacturonate and ZnO nanoparticles. 173 

 174 

 2.5 Data analysis 175 

The means and standard error (SE) of plant height, dry shoot and root biomass and metal 176 

concentrations in soil and plant samples were calculated for each treatment. Statistical 177 

analyses were conducted using Minitab software version 17 (Minitab TM Inc., State College, 178 

PA, USA), with significance level p<0.05. All treatment means were found to be normally 179 

distributed using Anderson-Darling’s test. General Linear Models (GLM), followed by Tukey’s 180 

HSD tests were used to identify any significant differences between treatments. The GLMs 181 

contained fixed factors of Zn species (four levels – uncontaminated control and the three 182 

different Zn species) and bacteria inoculation (three levels – uninoculated control and the two 183 

different PGPB) and the interaction of the two factors. 184 

 185 
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3. Results and Discussion 186 

3.1 Phase characterization of ZnS nanoparticles 187 

XRD analysis of the synthesized ZnS nanoparticles in (Supporting Information S5) showed 188 

three broad peaks at 2ϴ angle of 28.5, 48.2 and 56.5 corresponding to lattice planes of (111), 189 

(220) and (311) in the structure of ZnS sphalerite, respectively.  This is consistent with the 190 

crystal structure of the standard code (ICSD No. 01-0729269) for ZnS. The crystallite size was 191 

86.5 Å (8.65 nm) as calculated from the Debye-Scherrer formula. TEM images of the 192 

synthesized ZnS nanoparticles in (Supporting Information S5) indicate that the material 193 

occurred in clusters. 194 

3.2 Growth parameters under different Zn species and bacterial treatments 195 

Figure 1 shows B. juncea plant height, shoot dry biomass and root dry biomass at 6 weeks of 196 

growth for all Zn species and bacteria inoculation treatments and controls. GLM analyses of 197 

these growth parameters showed significant effects of the individual factors, Zn species and 198 

bacteria inoculation. Tukey HSD tests revealed significant differences in shoot and dry root 199 

biomass due to the interaction of the Zn species and bacteria inoculation factors represented 200 

by different letters in Figures 1B-C but not for plant height (Figure 1A). Shoot dry biomass 201 

(Figure 1B) was significantly lower in the Zn treatments compared to the control with no 202 

added Zn across all bacterial inoculation treatments. However, there was no significant 203 

difference in shoot dry biomass between the uninoculated control and inoculated ZnSO4 204 

treatments, suggesting that the presence of PGPB offset the effect of ZnSO4 contamination 205 

on shoot dry biomass. Root dry biomass in the uninoculated treatments (blue bars in Figure 206 

1C) was not significantly different between the uncontaminated control and the different Zn 207 

species, apart from for the ZnSO4 treatment which had significantly lower root dry biomass. 208 
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Similarly to shoot dry biomass, there appeared to be a restorative effect of PGPB on root dry 209 

biomass for the ZnSO4 treatments as there was no significant difference in root dry biomass 210 

between the inoculated ZnSO4 treatments and the uninoculated control. Shoot and root dry 211 

biomass were significantly lower in the Zn treatments compared to the control with no added 212 

Zn, whilst plant height and shoot and root dry biomass were significantly higher in the 213 

inoculated compared to the uninoculated treatments.  214 

Plant height was significantly lower in soil amended with ZnO nanoparticles across all 215 

bacteria inoculation treatments, compared to the no added Zn and ZnSO4 and ZnS 216 

nanoparticles treatments (Tukey HSD tests on Zn species factor, not shown in Figure 1A). 217 

However, from visual observation during the experiment, the uninoculated ZnSO4 treatment 218 

appeared to be the most phytotoxic as the B. juncea (L.) Czern. plants showed visible 219 

symptoms of toxicity (yellowing of leaves). These symptoms became more severe with 220 

increasing exposure time as the leaves of the plants began to wilt and fall off after 6 weeks of 221 

growth. There were no symptoms of toxicity in plants grown in soil amended with ZnS and 222 

ZnO nanoparticles throughout the experiment. In the absence of inoculation with PGPBs, 223 

addition of any of the Zn species investigated had a detrimental effect on shoot dry biomass, 224 

although differences amongst Zn species were not statistically significant. 225 

Hence plants exposed to ZnSO4 were more adversely affected, followed by those 226 

exposed to ZnO and then ZnS, although growth differences were not statistically significant. 227 

Previous studies have shown that soluble Zn is more toxic to plant growth compared to other 228 

forms of Zn.40, 41 We hypothesized that these differences reflect the relative solubilities of the 229 

Zn species applied, since solubility of these species increases in the order ZnS<ZnO<<ZnSO4.40 230 

Indeed, studies have shown that when applied to soils, ZnO dissolves much faster than ZnS 231 

(e.g. 42). Our nanoparticle dissolution experiments did not confirm this trend, with 232 
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concentration of Zn being slightly lower in ZnO suspensions (Supporting Information Figure 233 

S2), although the differences are small (~0.4 mg L-1). During the experiment, we noted 234 

significant aggregation of the ZnO nanoparticles (Supporting Information Figure S3), a feature 235 

also reported by numerous previous studies.43, 44 Thus, all else being equal, it is likely that Zn 236 

concentrations in ZnO will be higher in our soil systems. We have confidence in our measured 237 

concentrations based on comparison with previous studies for ZnO (e.g. 44) for similar nominal 238 

nanoparticle sizes, but our measured concentrations are much higher than those measured 239 

for ZnS,45 potentially due to different synthesis routes. 240 

 Zinc is a micronutrient required for plant health, playing an important role in plant 241 

metabolism by influencing the activities of hydrogenase and carbonic anhydrase, as well as in 242 

the synthesis of tryptophan, a precursor to indoleacetic acid synthesis.46 Consequently, Zn 243 

stimulates B. juncea growth at low concentration47, 48 but at higher concentration causes 244 

significant suppression of plant growth. We did not observe any growth promotion effect 245 

(relative to controls without Zn addition) even in the presence of nanoparticles, suggesting 246 

that nanoparticles supply enough dissolved Zn to exceed the beneficial threshold. Negative 247 

effects of ZnO nanoparticles on plant growth and biomass have been reported by other 248 

workers.7,49 The current study is the first, to the best of our knowledge, to investigate plant 249 

response to ZnS nanoparticle-contaminated soil. Our results suggest that ZnS nanoparticles 250 

are less phytotoxic compared to ZnO nanoparticles and ZnSO4 as indicated by plant height and 251 

visible symptoms of phytotoxicity. 252 

 253 

 254 

 255 

 256 
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 281 

Figure 1. Plant height (A), shoot dry biomass (B) and root dry biomass (C) of B. juncea after 6 weeks 

growth in unamended and contaminated soil to which 600 mg kg-1 elemental Zn was applied in the 

form of ZnSO4 and ZnO and ZnS NPs, comparing inoculated and uninoculated treatments. B1 

represents R. leguminosarum and B2 is P. brassicacearum. Bars are means ± standard error of three 

pots. In (B) and (C) different capital letters above the bars indicate significant differences in biomass 

between treatments (p<0.05, determined by GLM followed by Tukey HSD tests). In (A) the capital 

letters above the bars are identical, indicating no significant differences in plant height between 

treatments. 
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In contrast to speciation effects, our study showed significant increases in plant height 282 

and dry shoot and root biomass across all Zn species treatments when seeds were inoculated 283 

with bacteria (Tukey HSD tests on bacteria inoculation factor, not shown in Figure 1).  Mean 284 

plant height and shoot and root biomass were higher in the Zn treatments inoculated with 285 

bacteria, compared to the uninoculated treatments, suggesting greater tolerance of plants to 286 

Zn stress from contaminated soils upon inoculation with bacteria. However, the increase was 287 

significant only for shoot biomass for the ZnSO4 treatment (Figure 1B), where it could also be 288 

explained as a sulfur-promoted increase in growth.50-51 The potential for R. leguminosarum 289 

and P. brassicacearum to enhance growth in inoculated B. juncea plants may be attributed to 290 

reported PGPB properties beneficial for plant growth,27,52 including solubilization of 291 

phosphate and the production of indole acetic acid (IAA), ACC deaminase, and siderophores. 292 

53-55 However, these PGPB properties were not examined in this study. 293 

 294 

3.3 Effects of Zn speciation and bacteria on Zn uptake and translocation 295 

Shoot concentrations of Zn followed the trend ZnSO4>ZnO>ZnS (Supporting Information 296 

Figure S4A) across all treatments, consistent with the growth suppression described above. 297 

Within each Zn species treatment, shoot concentrations increased upon inoculation with 298 

bacteria, except for ZnO treatments where bacteria appear to have no effect.  By contrast, Zn 299 

concentrations in roots did not respond to bacterial inoculation except in ZnO treatments, 300 

whilst root concentrations also followed the trend ZnSO4>ZnO>ZnS for uninoculated 301 

treatments (Supporting Information Figure S4B). Consequently, BCFs (Table 1) calculated 302 

from the biomass and soil concentration data were all > 1 except for ZnS nanoparticles 303 

treatments with no bacteria and with P. brassicacearum (B2) inoculation. 304 
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Table 1. Bioaccumulation factors, translocation factors and phytoextraction efficiency in 305 

Brassica juncea after 6 weeks of growth in soils amended with 600 mg Zn kg-1 of different Zn 306 

species with and without inoculation with PGPB. B1 represents R. leguminosarum and B2 307 

represents P. brassicacearum.   308 

 309 

Values of BCF were higher in the inoculated than uninoculated treatments for all Zn 310 

species. TF values were > 1 in the inoculated and uninoculated treatments for all Zn species 311 

but, when plants were inoculated, TF varied between the different Zn species treatments. TF 312 

values increased slightly in inoculated plants growing in ZnSO4 contaminated soils, compared 313 

to uninoculated plants. The opposite response occurred in ZnO nanoparticles contaminated 314 

soils, with lower TF values occurring in the inoculated compared to the uninoculated plants. 315 

In the ZnS contaminated soils, compared to uninoculated plants, the TF value also decreased 316 

in plants inoculated with R. leguminosarum (B1) but increased in plants inoculated with P. 317 

brassicacearum (B2). Zn mass removal by B. juncea was estimated to compare the 318 

phytoextraction efficiency (PE) of Zn by inoculated and uninoculated plants from soil 319 

contaminated with different Zn species after 6 weeks of plant growth. Measurable changes 320 

in phytoextraction efficiencies were only associated with ZnSO4 treatments, increasing by 321 

Parameter 

 

 

Treatment 

ZnSO4 ZnO nanoparticles ZnS nanoparticles 

No 

bacteria 

B1 B2 No 

bacteria 

B1 B2 No 

bacteria 

B1 B2 

Bioaccumulation 

factor (BCF) 

1.78 1.85 2.00 1.19 1.39 1.45 0.27 1.15 0.46 

Translocation 

factor (TF) 

2.18 2.25 2.38 3.01 1.99 1.77 2.43 1.33 5.54 

Phytoextraction 

efficency (PE, %) 

0.05 0.28 0.26 0.04 0.07 0.06 0.01 0.04 0.03 
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about an order of magnitude upon bacterial inoculation, with no differences between the two 322 

bacteria (Table 1).    323 

Plants are considered as potential species for phytoextraction if both BCF and TF are > 324 

1.56 In this study, BCF and TF values varied with different Zn species. BCF was > 1 for inoculated 325 

and uninoculated ZnSO4 and ZnO treatments, but was < 1 for uninoculated ZnS and ZnS 326 

treatments inoculated with R. leguminosarum and ~1 for ZnS treatments inoculated with R. 327 

leguminosarum. TF values were > 1 for all inoculated and uninoculated Zn treatments, 328 

indicating effective translocation of Zn from roots to shoots. Our results are consistent with 329 

previous studies showing B. juncea to be a Zn hyperaccumulator.57-58 However, the overall 330 

phytoremediation potential was extremely low, with a maximum of 0.28% Zn mass from the 331 

soil extracted by plants over 6 weeks in the ZnSO4 treatments in the presence of bacteria 332 

(Table 1). Our findings are similar to other studies that have reported that inoculation with 333 

PGPB increases plant growth, metal uptake, tolerance and phytoremediation in contaminated 334 

soils.59-60 In contrast, another study reported that PGPB inoculation increased plant growth 335 

and Ni tolerance but reduced Ni uptake in plants.61 This suggests that different PGPBs elicit 336 

different responses that may also depend on the hyperaccumulator species.54-55  337 

 338 

3.4 Distribution of Zn in Brassica juncea root biomass 339 

Due to similar growth of plants inoculated with the two different strains of PGPB, only plants 340 

inoculated with P. brassicacearum were selected for transmission electron microscopy (TEM) 341 

(Figure 2). TEM micrographs indicated differences in the morphology and location of Zn in 342 

roots of B. juncea depending on Zn species. In the Zn nanoparticles treatments, roughly 343 

spherical Zn nanoparticles were observed, for example on the epidermis and root surfaces in 344 

the ZnO nanoparticles treatment (Figure 2B). In the roots of inoculated plants, less bacteria 345 
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were evident in the nanoparticles treatments (Figure 2E-F) compared to the ZnSO4 treatment, 346 

where they occurred around the root epidermis (Figure 2D).  347 

 348 

Figure 2. TEM micrograph of a root cross section (bar 1-5 µm) of (A-C) uninoculated ZnSO4, 349 

ZnO nanoparticles and ZnS nanoparticles and (D-F) inoculated roots exposed to 600 mg kg-1 350 

ZnSO4, ZnO nanoparticles and ZnS nanoparticles, after 6 weeks of growth. Labels in the root 351 

cell indicate: NPs - nanoparticles, cw - cell wall, ed - endodermis, ec - epidermis cell, B - 352 

Pseudomonas brassicacearum. 353 

 354 

 355 
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Micro-XRF intensity maps showing relative spatial distribution of Zn concentrations 356 

are shown in Figure 3, where uninoculated roots are compared with those inoculated with P. 357 

brassicacearum. The distribution of Zn varied with Zn species.  The highest Zn concentrations 358 

were in roots treated with ZnO (Figure 3B, E), where the cortex exhibited Zn concentrations 359 

that were about an order of magnitude higher than the epidermis.  360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

Figure 3. Synchrotron µXRF maps of the transverse section of fresh roots from (A-C) 371 

uninoculated and (D-F) inoculated (P. brassicacearum) B. juncea plants grown in soil treated 372 

with 600 mg Zn kg-1 of ZnSO4, ZnO and ZnS nanoparticles. Pixel brightness is displayed in RGB; 373 

red represents relatively higher Zn intensity, and blue low Zn signal. Fluorescence counts for 374 

each map have been normalized to background and the normalized counts plotted on the 375 

same scale for visual comparison.   376 

   377 

In ZnSO4 treatments, localized Zn hotspots were evident, but the most distinctive 378 

characteristic was that high Zn concentrations occurred in the form of stripes (Figure 3A, D). 379 

Single hotspots of high Zn concentration were also evident. ZnS treatments showed the 380 

lowest Zn concentrations levels with high Zn concentrations occurring as single hotspots 381 

(Figure 3C, F). Hotspots of Zn in the roots treated with ZnO and ZnS nanoparticles may indicate 382 

the presence of Zn nanoparticles. Comparison between inoculated (Figure 3D-F), and 383 
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uninoculated (Figure 3A-C) plants showed no significant impact of bacteria inoculation on Zn 384 

concentrations in the root in each treatment. This is entirely consistent with whole root 385 

analysis data (Supporting Information Figure S4B). 386 

The observed spatial distribution of Zn in the roots of B. juncea suggests that uptake 387 

of Zn by B. juncea is dependent on the form of Zn contamination in soil, with Zn hotspots 388 

observed in roots of plants grown in nanoparticles treatments. Whilst both imaging 389 

techniques pointed to the presence of nanoparticulate forms in roots exposed to ZnO and 390 

ZnS, nanoparticulate uptake could not be unambiguously confirmed because we did not have 391 

analytical capability on the TEM to check the composition. Nevertheless, other studies have 392 

reported that cellular penetration by nanoparticles is the mode of action by which 393 

nanoparticles interact with plants.26 Once inside a plant cell, nanoparticles can be transported 394 

apoplastically or symplastically through plasmodesmata.26, 62  395 

 396 

3.6 Speciation of Zn in Brassica juncea plants by XANES 397 

Zn µXANES spectra were acquired on some of the Zn hotspots identified by µXRF mapping to 398 

determine Zn speciation using linear combination fitting (LCF) of spectra from selected Zn 399 

standards. The best fits, based on residual R factors, are presented in Supporting Information 400 

S7 for ZnSO4 and ZnO treatments only (data for ZnS treatments was not considered to be of 401 

good enough quality). The percentages of species contributing to the LCF are presented in 402 

Figure 4.   403 

 404 

 405 
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 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

Figure 4. Linear combination fitting of  (a) ZnSO4 and (b) ZnO data from hotspots of Zn µ-XRF 418 

mapping in Brassica juncea roots. Data presented are for individual samples/treatments. Bar 419 

charts represent contribution (%) of the various species to the spectra of treatments 420 

uninoculated and inoculated with Rhizobium leguminosarum (B1) and P. brassicacearum (B2). 421 

Zn standards are ZnCO3 - Zn carbonate, ZnPHY - Zn phytate, ZnHIS - Zn histidine, ZnCYS- Zn 422 

cysteine and ZnPGA - Zn polygalacturonate. 423 

 424 

Most samples required 4 components to fully fit the data. Roots grown in ZnSO4 425 

contaminated soil showed that Zn was in the form of Zn phytate (35%), Zn polygalacturonate 426 

(30%), Zn cysteine (23%) and Zn carbonate (11%) in uninoculated plants. Roots inoculated 427 

with R. leguminosarum (B1) showed predominance of Zn polygalacturonate (48%) followed 428 

by Zn cysteine (33%) with subordinate amounts of Zn phytate (13%) and Zn carbonate (5%), 429 
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while those inoculated with P. brassicacearum (B2) showed predominance of Zn cysteine 430 

predominating (51%), followed by Zn polygalacturonate (32%) and Zn carbonate (17%) but 431 

there was no Zn phytate. In all cases, the inclusion of Zn sulfate did not improve fits to the 432 

data. For the ZnO nanoparticles-contaminated soil without bacteria inoculation, fitting 433 

showed Zn cysteine (57%) to be the dominant Zn form, followed by Zn polygalacturonate 434 

(37%) and Zn carbonate (15%). Roots inoculated with R. leguminosarum required Zn histidine 435 

(51%) to fully fit the data, being the only plants showing this species, accompanied by Zn 436 

polygalacturonate (38%) and Zn cysteine (10%). Finally, roots inoculated with P. 437 

brassicacearum showed the dominant form of Zn to be Zn cysteine (78%), with minor 438 

amounts of Zn polygalacturonate (13%) and Zn phytate (9%).  439 

Thus, our analysis displays common species associated with Zn exposure to plants. Zn 440 

phytate (inositol hexakis phosphate), C6H18O24P6; IP6) is a complex phosphate-containing 441 

molecule with a negatively charged phosphate group that forms stable complexes with ions 442 

including Zn2+.8, 63 The presence of Zn phytate in roots has been suggested as a Zn tolerance 443 

mechanism in non-hyperaccumulating plants,64-65 and recently Zn phytate was identified in B. 444 

juncea to contribute to Zn tolerance,66 in addition to Zn carbonate complexes. The presence 445 

of Zn polygalacturonate is also consistent with previous studies showing that cell wall 446 

associated Zn is bound to polygalacturonate.67 Complexation of Zn with carboxylic acids such 447 

as PGA (the main component of pectin in the cell wall) has been reported as a response 448 

mechanism to metal toxicity in plants exposed to high Zn concentrations.63,66 449 
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In effect, inoculation with bacteria is associated with a switch from phytate- 450 

polygalacturonate dominated Zn speciation to cysteine-polygalacturonate dominated 451 

speciation in roots of plants challenged with ZnSO4. This switch is consistent with previous 452 

studies in our laboratory, where significant Zn cysteine speciation only occurred in bacteria-453 

inoculated roots.23,66 Unlike those studies, however, we also found significant Zn cysteine 454 

speciation in uninoculated roots in this study for ZnSO4 treatments. These differences may 455 

depend on the plant species and experimental conditions. Cysteine synthesis is widely 456 

recognized as a natural response by plants to toxic metal exposure.68 Our findings suggests 457 

that the cysteine synthesis machinery was not completely disabled in these plants, perhaps 458 

due to differences in the type of soil used in the two studies. 459 

Nanoparticles treatments, represented by ZnO, exhibit some notable differences from 460 

ZnSO4 treatments. Firstly, Zn cysteine complexes represent a significant proportion of the 461 

overall speciation in uninoculated treatments, which may be further evidence that the lower 462 

solubility of ZnO does not compromise the cysteine synthesis machinery.  The high proportion 463 

of cysteine complexation in roots exposed to ZnO nanoparticles was unexpected as sulfur was 464 

not supplied, but can be explained by the presence of 248.7 mg S kg-1 in the soil (Supporting 465 

Information S1). Secondly, Zn histidine complexation dominates Zn speciation in roots 466 

inoculated with R. leguminosarum, and this appears to occur at the expense of Zn cysteine 467 

complexation (note that Zn cysteine still dominates in roots inoculated with P. 468 

brassicacearum). Zn histidine has been reported in previous studies, and is thought to help 469 

reduce the toxicity of Zn to the plant,8,41,65 being a ligand for binding metals in 470 

hyperaccumulator species,69 including Zn.70 Adediran et al.71 also reported Zn histidine 471 

complexation in roots of Vicia sativa, and this was thought to be controlled by nitrogen 472 
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metabolism potentially driven by legume-associated symbiotic bacteria. This may explain why 473 

we also see it only in plant roots inoculated with R. leguminosarum. 474 

Finally, LCF showed a complete absence of ZnO nanoparticles in roots of B. juncea, 475 

despite TEM suggesting internalized nanoparticles, likely due to these making up a smaller 476 

fraction of total Zn. It also suggests that nanoparticulate phases may have to be dissolved 477 

before Zn can be taken up by plants.10 As such, our observations are consistent with some 478 

recent studies reporting the absence of nanoparticulate ZnO in plants exposed to ZnO 479 

nanoparticles, where Zn was in the form of nitrates, citrate and phosphates.9-10 However, 480 

other studies have reported internalization of ZnO nanoparticles in different plants.72 It 481 

appears that whether nanoparticles are taken up by plants depends on the nanoparticle 482 

composition, the growth medium and the plant species involved.16, 73 483 

 484 

3.7 Environmental implications 485 

 486 

Speciation is an important parameter determining metal bioavailability and, in solution at 487 

least, has formed the basis of the Free Ion Activity Model for predicting metal bioavailability 488 

to cells.1 This study evaluated the effect of three different Zn species on plant growth, Zn 489 

phytotoxicity, Zn accumulation and Zn distribution in roots of a hyperaccumulator species (B. 490 

juncea (L.) Czern.), known for its Zn hyperaccumulative properties.59 In addition, we 491 

investigated whether inoculation with bacteria modified Zn speciation in plants. Based on our 492 

observations, we suggest a mechanistic model of the role of PGPB in ameliorating Zn 493 

phytotoxicity through changes in Zn speciation (Figure 5), focusing on root and rhizospheric 494 

processes. Although we do not have speciation data for ZnS treatments, we include it in the 495 

general model due to similarities in plant growth data to ZnO treatments. 496 

 497 
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 498 

 499 

Figure 5. Conceptual model of zinc biodynamics as revealed from plant growth experiments 500 

in which the form of 600 mg kg-1 Zn applied to soil in which B. juncea was grown for 6 weeks 501 

was varied, using inoculation data for P. brassicacearum only. Explanation of the arrows is 502 

provided in the text. 503 

 504 

The model emphasizes the inference that Zn is mostly taken up as Zn2+, in part facilitated by 505 

production of plant root exudates (green dashed arrows), with cysteine synthesis (red bars) 506 

as the main mechanism of Zn detoxification (ignoring Zn histidine in R. leguminosarum 507 

inoculations). When exposed to high concentrations of soluble ZnSO4, in the uninoculated 508 

treatment cysteine synthesis may be disabled (shown by blue cross through “cysteine 509 

synthase”), leading to enhanced metal toxicity. This inference is based on the observation of 510 

lower Zn cysteine in roots in the uninoculated ZnSO4 treatment, despite this treatment 511 

supplying the most sulfate for plant/bacterial metabolism, and also takes into account 512 

previous growth experiments in compost where Zn cysteine was not detected.19 However, 513 
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this hypothesis remains to be tested by detailed molecular level studies of the biochemistry 514 

of the response of B. juncea upon exposure to varying Zn2+ concentrations. Nevertheless, 515 

circumstantial evidence for this inference is that when inoculated with bacteria, roots 516 

exposed to ZnSO4 synthesize more cysteine, and plants grow as well as those exposed to 517 

nanoparticulate Zn and/ or controls without Zn addition. 518 

The model shares some attributes with that published by Adediran et al.,66 which was 519 

based purely on ZnSO4 contamination, but there are important differences that arise from 520 

varying the speciation of Zn supplied to soil. The new model includes the role of solubility in 521 

controlling Zn bioavailability to plant roots, with higher dissolved Zn2+ from ZnSO4, denoted 522 

by larger red arrows, being the main determinant of toxicity, particularly when plants were 523 

not inoculated with bacteria. This is entirely consistent with existing models of metal 524 

bioavailability and phytotoxicity.60-62 525 

Paradoxically, Zn cysteine was detected in roots exposed to ZnO nanoparticles where 526 

no sulfur is supplied to the soil. However, analysis of the soil showed that it contained a 527 

significant amount of sulfur (248.7 mg kg-1), so this result is entirely consistent with the model 528 

of cysteine synthesis through sulfur metabolism. Lastly, the model captures the observation 529 

that, in addition to soluble Zn2+, TEM revealed that Zn was also taken up in nanoparticulate 530 

form albeit at much lower quantities (11%). It remains to be established whether PGPB-driven 531 

changes in Zn speciation occur in plant roots or at the soil- rhizosphere-plant interface. Finally, 532 

we acknowledge that our findings are limited to the single concentration used in the 533 

experiments and that there may well be dose-dependent responses. Nevertheless they act as 534 

a reasonable starting point for understanding the role of bacteria on ameliorating metal 535 

toxicity to plants. 536 
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S1: Characterization of soil 17 

 18 

Table S1. Physical and chemical properties of the experimental soil. Values are means of the 19 

analysis of air-dried, sieved (<2 mm) sub-samples (n shown in parentheses). 20 

 21 

 22 

S2: Pot experiments  23 

In the primary experiment, conducted in July-August 2014, plant growth and metal content of soil and 24 
plant materials were measured. A second experiment was conducted in December 2014-February 25 
2015 to provide fresh material for synchrotron based X-ray spectroscopic analysis. The experiments 26 
were conducted in a greenhouse at the School of Biological Sciences, University of Edinburgh, set to 27 
provide a day/night temperature of 21oC in a 18 h photoperiod at a photosynthetic photon flux density 28 
(PPFD) of 150 µmol m–2 s–1 provided by cool white fluorescent bulbs. 29 

Both experiments were set-up in exactly the same manner. The soil was air dried, crushed and passed 30 
through a 2 mm stainless steel sieve, and then mixed with 10% sand by volume to aid drainage. Next 31 
the soil was sterilized (134oC for 4 min in a BMM Weston autoclave) and amended with 600 mg Zn kg-32 
1 in the form of ZnSO4, ZnS and ZnO nanoparticles. The soil was spiked in 9 kg batches with different 33 
Zn species, and each batch mixed by hand for 1 h to distribute Zn contamination evenly. Plant growth 34 
experiments contained 12 treatments (including controls), with each replicated in three pots. Each 35 
2.15 L pot contained 1 kg of spiked (ZnSO4, ZnO and ZnS) or un-spiked soil (control). Both spiked and 36 
control pots were watered with deionized water and placed in individual trays throughout the 37 
experiment. The locations of the pots were randomized by assigning a number to each pot and using 38 
a manual technique to select pots at random in the greenhouse space. Soils were left to equilibrate 39 
for a week in the greenhouse before planting, following a similar time frame to previous studies,1 40 
which for the soil type would allow interaction with soil minerals while also maximizing bioavailability 41 
toxicity to plants. Although the experimental soil was sterilized initially, the greenhouse was not a 42 
sterile environment. 43 

Parameters Mean value  

(number of sub-samples) 

Moisture content (%) 26.2 (3) 

Organic matter content (% loss on ignition at 450°C) 15.4 (6) 

pH (soil: deionized water m:v (1:2)) 6.2 (1) 

N (mg g-1) 1.79 (4) 

P (mg g-1) 0.31 (4) 

K (mg g-1) 8.49 (4) 

Zn (mg g-1) 0.025 (4) 

S (mg kg-1) 249 (2) 
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For bacterial inoculation, Rhizobium legumniosarum bv. trifolii and Pseudomonas brassicacearum 44 
were selected for their tolerance to Zn and their demonstrated ability to promote growth of Brassica 45 
juncea.1-2 R. leguminosarum bv. trifolii (strain WSM1325) was isolated from the rhizosphere of a clover 46 
plant (School of Biological Sciences, University of Edinburgh, UK). P. brassicacearum subsp. 47 
brassicacearum (strain DBK11) was, obtained as a lyophilizate from the German collection of 48 
microorganisms and cell cultures (Leibniz Institute, DSMZ Germany; DSM number 13227). The bacteria 49 
strains (R. leguminosarum and P. brassicacearum) were grown in a nutrient medium (containing 1 g 50 
meat extract, 2 g yeast extract, 5 g peptone, 5 g NaCl, pH 7.4) for 2 days before being harvested, 51 
centrifuged, and washed three times with sterile deionized water. The pelleted cells were re-52 
suspended in sterile deionized water to 108 CFU mL-1. 53 

Prior to inoculation, seeds of B. juncea were surface sterilized with 5% NaClO for 15 min and washed 54 
three times with sterile deionized water under a laminar flow hood. Seeds were soaked for 4 h in 10 55 
mL bacteria suspension and uninoculated seeds were soaked in sterilized deionized water over the 56 
same duration before sowing 5 seeds in each pot. Seedlings were thinned out to 3 plants per pot at 57 
12 days after planting. Pots were individually irrigated with tap water from the tray twice a week 58 
throughout the experiments.  59 

 60 

S3: Plant sampling, and bioaccumulation analysis 61 

All plants were harvested 6 weeks after planting of seeds. Shoots were cut 2 cm above the soil surface 62 
and washed with running tap water. Pots were emptied and roots were separated and washed in tap 63 
water to remove soil particles from the root surface. The harvested plant material (roots and shoots 64 
separately) was oven dried to constant weight at 65oC for 72 h and then weighed to determine 65 
biomass. Dried samples were finely ground using mortar and pestle and stored in polyethylene tubes 66 
prior to acid digestion for analysis. Total Zn concentrations in duplicate sub-samples of the ground 67 
plant materials and soil (batched for each treatment from the 3 replicate pots) were determined as 68 
described by Allen et al.3 6 mL concentrated HCl and 1 mL HNO3 were used for digestion of 0.5 g ashed 69 
soil samples and 2 mL concentrated H2SO4 and 0.75 mL H2O2 (30%) were used for digestion of 0.1 g 70 
plant material samples. Zn concentrations were determined in the digest by inductively coupled 71 
plasma-optical emission spectrometry (ICP-OES) (Perkin Elmer Optima 5300 DV), with calibration 72 
standards made from Zn stock standard solution. The calibration standards required an R2 value of at 73 
least 0.9999 in order to present a satisfactory calibration curve. Quality control blank checks and 74 
external calibration verification checks were run regularly throughout the analysis. An external 75 
standard (Merck ICP Multi element standard solution VI CertiPUR®) was analyzed at different dilutions 76 
as a cross reference for the calibration graphs. Zn concentrations measured in digest blanks were 77 
subtracted from the sample results. 78 

The total Zn concentrations from soil and plant analysis were used to evaluate Zn phytoextraction by 79 
Brassica juncea (L.) Czern. The mean of the duplicate subsamples of each material was calculated to 80 
provide the single Zn concentration data used in the bioaccumulation factors, translocation factors 81 
and phytoextraction efficiency for each treatment combination. 82 

The bioaccumulation factor (BCF) is the ratio of the concentration of metal in the plant tissue to the 83 
initial metal concentration in the soil.4 The Translocation factor (TF) is the ratio of the metal 84 
concentration of the plant shoot to the metal concentration of the root.4 Phytoextraction efficiency 85 
(PE) is the ratio of the mass of an element in the plant shoot to that in soil, expressed as a %, 86 

 87 

𝑃𝐸(%) =
𝑀𝑠ℎ𝑜𝑜𝑡 × 𝑊𝑠ℎ𝑜𝑜𝑡

𝑀𝑠𝑜𝑖𝑙 × 𝑊𝑠𝑜𝑖𝑙
   × 100    (Equation 1)   88 
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 89 

where Mshoot is the metal concentration in shoots of the plants (mg kg-1), Wshoot is the dry plant above 90 
ground biomass (g), Msoil is the initial metal concentration in soil (mg kg-1) and Wsoil is the mass of soil 91 
in the pot (g). PE values reflect the amount of remediation of a metal by plant shoots from soil.5 92 

 93 

S4: Synchrotron based X-ray spectroscopic analysis 94 

The second pot experiment in 2014-15 was conducted using an identical procedure to provide live 95 
plant material for Zn speciation analysis by X-ray absorption. Live plants were used to avoid sample 96 
treatments such as freezing and, drying that could alter Zn speciation. Live plants were transported 97 
for harvest and micro X-ray fluorescence (µXRF) and micro X-ray absorption near edge structure 98 
(µXANES) analyses at beamline I18 at Diamond Light Source, UK.  At harvest, live roots and shoots of 99 
Brassica juncea grown in soil amended with 600 mg kg-1 of different Zn species were washed 100 
thoroughly with deionized water to eliminate any surface contaminants. Root and shoot samples were 101 
cut with a scalpel, embedded in Meta-mix for 8 h and then axially sectioned (30 μm thickness) using a 102 
Reichert Ultracut microtome. The sample section was placed on a sapphire disc, covered with Kapton® 103 
tape and loaded into an Al sample holder, in a nitrogen cryostat, with the sample inclined at an angle 104 
of 45o to the incident beam. Zinc distribution in root and shoot samples was mapped with an incident 105 
energy of 10.5 keV. XRF mapping was performed on areas of 0.5 x 0.5 mm with 2 µm resolution. From 106 
the mapping regions of high Zn concentration were identified for the collection of µXANES data at the 107 
Zn K-edge. X-ray absorption spectra were collected in fluorescence mode using a nine- element ORTEC 108 
germanium solid state detector placed in the horizontal plane at a right angle to the beam axis to 109 
reduce detection of elastically scattered photons. The energy was scanned through the absorption 110 
edge of Zn (9630-9850 eV).  Ca. 5 scans of 20 min each were recorded and averaged at each spot 111 
analyzed. These high Zn regions were selected for collection of µXANES spectra. Due to the long time 112 
required to analyze each sample, data collection focused more on the inoculated (Pseudomonas 113 
brassicacearum) and uninoculated root samples. 114 

Zn K-edge µXANES spectra were also collected under similar beam conditions for selected Zn 115 
standards (ZnS nanoparticles, Zn oxalate, Zn phosphate, Zn histidine, Zn cysteine, Zn phytate, Zn 116 
formate, Zn polygalacturonate, ZnO nanoparticles, preparation detailed in Adediran et al., 2016).6 117 
Specifically, nanoparticles were prepared as pellets diluted in cellulose whereas all the others 118 
standards were made in solutions of 70 mM Zn-ligand complexes.  The monochromator was calibrated 119 
using a Zn foil scan (edge position 9659 eV). Zn solid standards were made into pellets using cellulose, 120 
whereas liquid forms were loaded on Al cells covered with Kapton® tape. The XRF spectra were 121 
analyzed using PyMCA 4.4.1 software.7   In order to assess chemical species information, all µXANES 122 
spectra collected from the samples and standards were normalized and aligned. Linear Combination 123 
Fitting (LCF) was used through the Athena IFFEFIT software package8 to identify the relative 124 
proportions of Zn reference spectra within the samples. The goodness of the fit was estimated by 125 
determining the residual R factor between the root sample and the Zn standard fits,  126 

𝑅 =  
∑(data −  fit)2

∑(data)2
       (Equation 2) 127 

     A lower R factor represents the best fit between the sample spectrum and the fitted standard 128 
spectra.9   The spectra and their fits are shown in Figure S5. 129 

 130 

131 
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S5: Nanoparticles Characterization 132 

ZnS nanoparticles synthesized in our laboratory were characterized by powder X-Ray Diffraction (XRD) 133 
and by Transmission Electron Microscopy (TEM). Details are given in the main text and Figure S1 shows 134 
a representative XRD output and TEM images. 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

 147 

 148 

 149 

 150 

Figure S1: A XRD diffractogram of synthesized ZnS nanoparticles suggesting sphalerite structure and 151 
B transmission electron micrographs of synthesized ZnS nanoparticles showing aggregation. 152 

The dissolution of ZnO and ZnS nanoparticles in water was measured over a 4-day experiment by 153 
suspending the nanoparticles in deionized water to a nominal concentration of 600 mg L-1 in elemental 154 
Zn, consistent with the Zn dose in the experimental soil. The starting pH of the suspensions was 6.2 155 
and final pH was 5.77 (ZnO) and 5.79 (ZnS). Experiments were carried out in glass jars purged with 156 
oxygen-free nitrogen and sealed with butyl rubber-lined crimp seals. This approach was designed to 157 
limit oxidative dissolution of ZnS via sulfide oxidation so that we could compare the stoichiometric 158 
dissolution only. Although this might differ from the soil environment, we believe oxygen penetration 159 
in the soil treatments was likely limited by the pot watering regime to maintain soil moisture content 160 
(see section S2 above). Microcosms were set up in duplicate, and sampled once per day using a syringe 161 
followed by centrifugal filtration through a 3 kD pore filter for 30 min at 5,000 g. The filtrate was 162 
acidified to 2% in HNO acid and analyzed for dissolved Zn using ICP-OES as above (section S3). At the 163 
end of the experiment, a diluted suspension of each microcosm was analysed for particle size 164 
distribution using a Zetasizer (Nano ZS, Malvern, UK). 165 

 166 

 167 

 168 

A 

B
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 169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

Figure S2: Concentration of Zn against time during dissolution of ZnO and ZnS nanoparticles in 180 
ultrapure water. 181 

Time course Zn concentrations are slightly lower in ZnO suspensions, but the differences are small 182 
(~0.4 mg L-1) and indeed concentrations are identical at the end of the experiment (92 h). During the 183 
experiment, we noted significant aggregation of the ZnO nanoparticles, forming aggregates in the mm 184 
size range. This is a feature reported by numerous previous studies (e.g.10-11), and was confirmed by 185 
particle size analysis, showing large sizes for ZnO compared to ZnS (Figure S3). Thus, all else being 186 
equal, it is likely that Zn concentrations in ZnO will be higher, especially as our measured Zn 187 
concentrations are comparable to those in previous studies (e.g.11) for similar nominal nanoparticle 188 
sizes. 189 

190 
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 202 
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 207 

 208 

 209 

 210 

 211 

 212 

 213 

Figure S3. Particle size analysis of nanoparticle suspensions at the end of dissolution experiments. 214 
Note the larger average size for ZnO (2204 nm) compared to ZnS (825 nm). 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 



8 
 

S6: Zinc accumulation in plant tissues 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 

Figure S4: Zn concentrations in inoculated and uninoculated A shoot biomass and B root biomass 6 236 
weeks after planting in Zn contaminated soil. Bars are means and error bars are standard error of 237 
mean of three pots. Different letters and symbols indicate significant (p<0.05) differences in Zn 238 
contents. B1 is Rhizobium leguminosarum and B2 is Pseudomonas brassicacearum. 239 

 240 

  241 

B A 
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S7: XANES Linear Combination Fit (LCF) graphs 242 

 243 

Figure S5: Data were fitted over the range 9650-9710 eV244 

 245 

 246 

 247 

 248 

 249 
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