3,460 research outputs found

    Asymptotic behavior of the entropy of chains placed on stripes

    Full text link
    By using the transfer matrix approach, we investigate the asymptotic behavior of the entropy of flexible chains with MM monomers each placed on stripes. In the limit of high density of monomers, we study the behavior of the entropy as a function of the density of monomers and the width of the stripe, inspired by recent analytical studies of this problem for the particular case of dimers (M=2). We obtain the entropy in the asymptotic regime of high densities for chains with M=2,..,9M=2,..,9 monomers, as well as for the special case of polymers, where M→∞M\to\infty, and find that the results show a regular behavior similar to the one found analytically for dimers. We also verify that in the low-density limit the mean-field expression for the entropy is followed by the results from our transfer matrix calculations

    Phasespace Correlations of Antideuterons in Heavy Ion Collisions

    Get PDF
    In the framework of the relativistic quantum molecular dynamics approach ({\small RQMD}) we investigate antideuteron (d‾\overline{d}) observables in Au+Au collisions at 10.7~AGeV. The impact parameter dependence of the formation ratios d‾/p‾2\overline{d}/\overline{p}^2 and d/p2{d}/{p}^2 is calculated. In central collisions, the antideuteron formation ratio is predicted to be two orders of magnitude lower than the deuteron formation ratio. The d‾\overline{d} yield in central Au+Au collisions is one order of magnitude lower than in Si+Al collisions. In semicentral collisions different configuration space distributions of p‾\overline{p}'s and d‾\overline{d}'s lead to a large ``squeeze--out'' effect for antideuterons, which is not predicted for the p‾\overline{p}'s

    The Kasteleyn model and a cellular automaton approach to traffic flow

    Full text link
    We propose a bridge between the theory of exactly solvable models and the investigation of traffic flow. By choosing the activities in an apropriate way the dimer configurations of the Kasteleyn model on a hexagonal lattice can be interpreted as space-time trajectories of cars. This then allows for a calculation of the flow-density relationship (fundamental diagram). We further introduce a closely-related cellular automaton model. This model can be viewed as a variant of the Nagel-Schreckenberg model in which the cars do not have a velocity memory. It is also exactly solvable and the fundamental diagram is calculated.Comment: Latex, 13 pages including 3 ps-figure

    Coulomb and Liquid Dimer Models in Three Dimensions

    Full text link
    We study classical hard-core dimer models on three-dimensional lattices using analytical approaches and Monte Carlo simulations. On the bipartite cubic lattice, a local gauge field generalization of the height representation used on the square lattice predicts that the dimers are in a critical Coulomb phase with algebraic, dipolar, correlations, in excellent agreement with our large-scale Monte Carlo simulations. The non-bipartite FCC and Fisher lattices lack such a representation, and we find that these models have both confined and exponentially deconfined but no critical phases. We conjecture that extended critical phases are realized only on bipartite lattices, even in higher dimensions.Comment: 4 pages with corrections and update

    A Comparative Study of the Valence Electronic Excitations of N_2 by Inelastic X-ray and Electron Scattering

    Full text link
    Bound state, valence electronic excitation spectra of N_2 are probed by nonresonant inelastic x-ray and electron scattering. Within the usual theoretical treatments, dynamical structure factors derived from the two probes should be identical. However, we find strong disagreements outside the dipole scattering limit, even at high probe energies. This suggests an unexpectedly important contribution from intra-molecular multiple scattering of the probe electron from core electrons or the nucleus. These effects should grow progressively stronger as the atomic number of the target species increases.Comment: Submitted to Physical Review Letters April 27, 2010. 12 pages including 2 figure pages

    Lubrication at physiological pressures by polyzwitterionic brushes

    Get PDF
    The very low sliding friction at natural synovial joints, which have friction coefficients of mu < 0.002 at pressures up to 5 megapascals or more, has to date not been attained in any human-made joints or between model surfaces in aqueous environments. We found that surfaces in water bearing polyzwitterionic brushes that were polymerized directly from the surface can have m values as low as 0.0004 at pressures as high as 7.5 megapascals. This extreme lubrication is attributed primarily to the strong hydration of the phosphorylcholine-like monomers that make up the robustly attached brushes, and may have relevance to a wide range of human-made aqueous lubrication situations

    Author Correction: LKB1 loss links serine metabolism to DNA methylation and tumorigenesis

    No full text
    Erratum for: LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. [Nature. 2016

    Elastic energy of polyhedral bilayer vesicles

    Get PDF
    In recent experiments [M. Dubois, B. Dem\'e, T. Gulik-Krzywicki, J.-C. Dedieu, C. Vautrin, S. D\'esert, E. Perez, and T. Zemb, Nature (London) Vol. 411, 672 (2001)] the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T. Gulik-Krzywicki, J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc. Natl. Acad. Sci. U.S.A. Vol. 101, 15082 (2004)] that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron
    • …
    corecore