2,232 research outputs found
Coherent control of photocurrent in a strongly scattering photoelectrochemical system
A fundamental issue that limits the efficiency of many photoelectrochemical
systems is that the photon absorption length is typically much longer than the
electron diffusion length. Various photon management schemes have been
developed to enhance light absorption; one simple approach is to use randomly
scattering media to enable broadband and wide-angle enhancement. However, such
systems are often opaque, making it difficult to probe photo-induced processes.
Here we use wave interference effects to modify the spatial distribution of
light inside a highly-scattering dye-sensitized solar cell to control photon
absorption in a space-dependent manner. By shaping the incident wavefront of a
laser beam, we enhance or suppress photocurrent by increasing or decreasing
light concentration on the front side of the mesoporous photoanode where the
collection efficiency of photoelectrons is maximal. Enhanced light absorption
is achieved by reducing reflection through the open boundary of the photoanode
via destructive interference, leading to a factor of two increase in
photocurrent. This approach opens the door to probing and manipulating
photoelectrochemical processes in specific regions inside nominally opaque
media.Comment: 21 pages, 4 figures, in submission. The first two authors contributed
equally to this paper, and should be regarded as co-first author
Information and Particle Physics
Information measures for relativistic quantum spinors are constructed to
satisfy various postulated properties such as normalisation invariance and
positivity. Those measures are then used to motivate generalised Lagrangians
meant to probe shorter distance physics within the maximum uncertainty
framework. The modified evolution equations that follow are necessarily
nonlinear and simultaneously violate Lorentz invariance, supporting previous
heuristic arguments linking quantum nonlinearity with Lorentz violation. The
nonlinear equations also break discrete symmetries. We discuss the implications
of our results for physics in the neutrino sector and cosmology
A novel therapeutic approach to cytokine modulation in articular inflammation using filarial nematode derived ES-62
Meeting abstract on a novel therapeutic approach to cytokine modulation in articular inflammation. Discovering safe, novel immunomodulators that are effective in RA is currently a major therapeutic objective. Long-term immune system deviation is most striking in the host-parasite relationship, in which microbes may coexist with a human host. ES-62 exhibited powerful immunomodulation of CIA, preventing initiation of inflammatory arthritis. Crucially, ES-62 suppressed even established disease. These effects were due to inhibition of cytokine release, specifically TNF-α, and reversal of collagen specific Th1 responses associated with reduced expression of IFN-γ. The physiologic relevance of these observations was confirmed, as ES-62 down-regulated the release of proinflammatory cytokines (TNF-α and IL-6) from patient-derived samples
Vibration of unsymmetrically laminated thick plates with quadrangular boundary
The problem of free vibration of arbitrary quadrilateral unsymmetrically laminated plates subject to arbitrary boundary conditions is considered. The Ritz procedures supplemented by the simple polynomial shape functions are employed to derive the governing eigenvalue equation. The displacements are approximated by a set of polynomials which consist of a basic boundary function that impose the various boundary constraints. A first-order shear deformable plate theory is employed to account for the effects of the transverse shear deformation. The numerical accuracy of the solution is verified by studying the convergence characteristics of the vibration frequencies and also by comparison with existing results. The new results of this study include the sensitivity of the vibration responses to variations in the lamination, boundary constraints and thickness effects, and also their interactions. These numerical values are presented for a typical graphite/epoxy material, in tabular and graphical forms
Genome analysis of a new Rhodothermaceae strain isolated from a hot spring
A bacterial strain, designated RA, was isolated from water sample of a hot spring on Langkawi Island of Malaysia using marine agar. Strain RA is an aerophilic and thermophilic microorganism that grows optimally at 50-60°C and is capable of growing in marine broth containing 1-10% (w/v) NaCl. 16S rRNA gene sequence analysis demonstrated that this strain is most closely related (<90% sequence identity) to Rhodothermaceae, which currently comprises of six genera: Rhodothermus (two species), Salinibacter (three species), Salisaeta (one species), Rubricoccus (one species), Rubrivirga (one species), and Longimonas (one species). Notably, analysis of average nucleotide identity (ANI) values indicated that strain RA may represent the first member of a novel genus of Rhodothermaceae. The draft genome of strain RA is 4,616,094 bp with 3630 protein-coding gene sequences. Its GC content is 68.3%, which is higher than that of most other genomes of Rhodothermaceae. Strain RA has genes for sulfate permease and arylsulfatase to withstand the high sulfur and sulfate contents of the hot spring. Putative genes encoding proteins involved in adaptation to osmotic stress were identified which encode proteins namely Na+/H+ antiporters, a sodium/solute symporter, a sodium/glutamate symporter, trehalose synthase, malto-oligosyltrehalose synthase, choline-sulfatase, potassium uptake proteins (TrkA and TrkH), osmotically inducible protein C, and the K+ channel histidine kinase KdpD. Furthermore, genome description of strain RA and comparative genome studies in relation to other related genera provide an overview of the uniqueness of this bacterium
Recommended from our members
The LONI QC System: A Semi-Automated, Web-Based and Freely-Available Environment for the Comprehensive Quality Control of Neuroimaging Data.
Quantifying, controlling, and monitoring image quality is an essential prerequisite for ensuring the validity and reproducibility of many types of neuroimaging data analyses. Implementation of quality control (QC) procedures is the key to ensuring that neuroimaging data are of high-quality and their validity in the subsequent analyses. We introduce the QC system of the Laboratory of Neuro Imaging (LONI): a web-based system featuring a workflow for the assessment of various modality and contrast brain imaging data. The design allows users to anonymously upload imaging data to the LONI-QC system. It then computes an exhaustive set of QC metrics which aids users to perform a standardized QC by generating a range of scalar and vector statistics. These procedures are performed in parallel using a large compute cluster. Finally, the system offers an automated QC procedure for structural MRI, which can flag each QC metric as being 'good' or 'bad.' Validation using various sets of data acquired from a single scanner and from multiple sites demonstrated the reproducibility of our QC metrics, and the sensitivity and specificity of the proposed Auto QC to 'bad' quality images in comparison to visual inspection. To the best of our knowledge, LONI-QC is the first online QC system that uniquely supports the variety of functionality where we compute numerous QC metrics and perform visual/automated image QC of multi-contrast and multi-modal brain imaging data. The LONI-QC system has been used to assess the quality of large neuroimaging datasets acquired as part of various multi-site studies such as the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study and the Alzheimer's Disease Neuroimaging Initiative (ADNI). LONI-QC's functionality is freely available to users worldwide and its adoption by imaging researchers is likely to contribute substantially to upholding high standards of brain image data quality and to implementing these standards across the neuroimaging community
Topological phase transition in an all-optical exciton-polariton lattice
Topological insulators are a class of electronic materials exhibiting robust
edge states immune to perturbations and disorder. This concept has been
successfully adapted in photonics, where topologically nontrivial waveguides
and topological lasers were developed. However, the exploration of topological
properties in a given photonic system is limited to a fabricated sample,
without the flexibility to reconfigure the structure in-situ. Here, we
demonstrate an all-optical realization of the orbital Su-Schrieffer-Heeger
(SSH) model in a microcavity exciton-polariton system, whereby a cavity photon
is hybridized with an exciton in a GaAs quantum well. We induce a zigzag
potential for exciton polaritons all-optically, by shaping the nonresonant
laser excitation, and measure directly the eigenspectrum and topological edge
states of a polariton lattice in a nonlinear regime of bosonic condensation.
Furthermore, taking advantage of the tunability of the optically induced
lattice we modify the intersite tunneling to realize a topological phase
transition to a trivial state. Our results open the way to study topological
phase transitions on-demand in fully reconfigurable hybrid photonic systems
that do not require sophisticated sample engineering.Comment: 7 pages, 4 figure
Nonsteroidal Antiinflammatory Drug Use and Association With Incident Hypertension in Ankylosing Spondylitis.
ObjectiveNonsteroidal antiinflammatory drugs (NSAIDs) increase blood pressure and potentially cardiovascular burden, which may limit their use in ankylosing spondylitis (AS). Our objective was to determine the association of NSAID use with incident hypertension in a longitudinal AS cohort.MethodsAdults with AS were enrolled in a prospective cohort study of patient outcomes and examined every 4-6 months. Hypertension was defined by patient-reported hypertension; antihypertensive medication use; or, on 2 consecutive visits, systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg. Continuous NSAID use was dichotomized based on the validated NSAID index. We assessed the association of NSAID use as a time-varying exposure with the incidence of hypertension using Cox proportional hazards models.ResultsOf the 1,282 patients in the cohort, 628 patients without baseline hypertension had at least 1 year of follow-up and were included in the analysis. Of these, 72% were male, the mean age at baseline was 39 ± 13 years, and 200 patients used NSAIDs continuously. On follow-up, 129 developed incident hypertension. After controlling for other variables, continuous NSAID use was associated with a hazard ratio of 1.12 for incident hypertension (95% confidence interval 1.04-1.20), compared to noncontinuous or no use. The association did not differ in subgroups defined by age, body mass index, biologic use, or disease activity.ConclusionIn our prospective, longitudinal AS cohort, continuous NSAID use was associated with a 12% increased risk for the development of incident hypertension, as compared to noncontinuous or no NSAID use
Being proven wrong elicits learning in children - but only in those with higher executive function skills
This study investigated whether prompting children to generate predictions about an outcome facilitates activation of prior knowledge and improves belief revision. 51 children aged 9-12 were tested on two experimental tasks in which generating a prediction was compared to closely matched control conditions, as well as on a test of executive functions (EF). In Experiment 1, we showed that children exhibited a pupillary surprise response to events that they had predicted incorrectly, hypothesized to reflect the transient release of noradrenaline in response to cognitive conflict. However, children\u27s surprise response was not associated with better belief revision, in contrast to a previous study involving adults. Experiment 2 revealed that, while generating predictions helped children activate their prior knowledge, only those with better inhibitory control skills learned from incorrectly predicted outcomes. Together, these results suggest that good inhibitory control skills are needed for learning through cognitive conflict. Thus, generating predictions benefits learning - but only among children with sufficient EF capacities to harness surprise for revising their beliefs. (DIPF/Orig.
- …