13 research outputs found

    Linearisation instability of gravity waves?

    Get PDF
    Gravity waves in irrotational dust spacetimes are characterised by nonzero magnetic Weyl tensor HabH_{ab}. In the linearised theory, the divergence of HabH_{ab} is set to zero. Recently Lesame et al. [Phys. Rev. D {\bf 53}, 738 (1996)] presented an argument to show that, in the exact nonlinear theory, divH=0div H=0 forces Hab=0H_{ab}=0, thus implying a linearisation instability for gravity waves interacting with matter. However a sign error in the equations invalidates their conclusion. Bianchi type V spacetimes are shown to include examples with divH=0≠Habdiv H=0\neq H_{ab}. An improved covariant formalism is used to show that in a generic irrotational dust spacetime, the covariant constraint equations are preserved under evolution. It is shown elsewhere that \mbox{div} H=0 does not generate further conditions.Comment: 8 pages Revtex; to appear Phys. Rev.

    Irrotational dust with Div H=0

    Get PDF
    For irrotational dust the shear tensor is consistently diagonalizable with its covariant time derivative: σab=0=σ˙ab,  a≠b\sigma_{ab}=0=\dot{\sigma}_{ab},\; a\neq b, if and only if the divergence of the magnetic part of the Weyl tensor vanishes: div H=0div~H = 0. We show here that in that case, the consistency of the Ricci constraints requires that the magnetic part of the Weyl tensor itself vanishes: Hab=0H_{ab}=0.Comment: 19 pages. Latex. Also avaliable at http://shiva.mth.uct.ac.za/preprints/text/lesame2.te

    Consistency of dust solutions with div H=0

    Get PDF
    One of the necessary covariant conditions for gravitational radiation is the vanishing of the divergence of the magnetic Weyl tensor H_{ab}, while H_{ab} itself is nonzero. We complete a recent analysis by showing that in irrotational dust spacetimes, the condition div H=0 evolves consistently in the exact nonlinear theory.Comment: 3 pages Revte

    Silent universes with a cosmological constant

    Full text link
    We study non-degenerate (Petrov type I) silent universes in the presence of a non-vanishing cosmological constant L. In contrast to the L=0 case, for which the orthogonally spatially homogeneous Bianchi type I metrics most likely are the only admissible metrics, solutions are shown to exist when L is positive. The general solution is presented for the case where one of the eigenvalues of the expansion tensor is 0.Comment: 11 pages; several typos corrected which were still present in CGQ version; minor change

    Nonperturbative gravito-magnetic fields

    Full text link
    In a cold matter universe, the linearized gravito-magnetic tensor field satisfies a transverse condition (vanishing divergence) when it is purely radiative. We show that in the nonlinear theory, it is no longer possible to maintain the transverse condition, since it leads to a non-terminating chain of integrability conditions. These conditions are highly restrictive, and are likely to hold only in models with special symmetries, such as the known Bianchi and G2G_2 examples. In models with realistic inhomogeneity, the gravito-magnetic field is necessarily non-transverse at second and higher order.Comment: Minor changes to match published version; to appear in Phys. Rev.

    Newtonian Cosmology in Lagrangian Formulation: Foundations and Perturbation Theory

    Get PDF
    The ``Newtonian'' theory of spatially unbounded, self--gravitating, pressureless continua in Lagrangian form is reconsidered. Following a review of the pertinent kinematics, we present alternative formulations of the Lagrangian evolution equations and establish conditions for the equivalence of the Lagrangian and Eulerian representations. We then distinguish open models based on Euclidean space R3\R^3 from closed models based (without loss of generality) on a flat torus \T^3. Using a simple averaging method we show that the spatially averaged variables of an inhomogeneous toroidal model form a spatially homogeneous ``background'' model and that the averages of open models, if they exist at all, in general do not obey the dynamical laws of homogeneous models. We then specialize to those inhomogeneous toroidal models whose (unique) backgrounds have a Hubble flow, and derive Lagrangian evolution equations which govern the (conformally rescaled) displacement of the inhomogeneous flow with respect to its homogeneous background. Finally, we set up an iteration scheme and prove that the resulting equations have unique solutions at any order for given initial data, while for open models there exist infinitely many different solutions for given data.Comment: submitted to G.R.G., TeX 30 pages; AEI preprint 01
    corecore