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Abstract

For irrotational dust the shear tensor is consistently diagonalizable

with its covariant time derivative: �ab = 0 = _�ab; a 6= b, if and only

if the divergence of the magnetic part of the Weyl tensor vanishes:

div H = 0. We show here that in that case, the consistency of the

Ricci constraints requires that the magnetic part of the Weyl tensor

itself vanishes: Hab = 0.

Subject headings:

cosmology - galaxies: clustering,

formation - hydrodynamics - relativity - exact solutions

1 Introduction

The local non - linear dynamics of irrotational dust with a purely \electric"

Weyl tensor has been investigated by Matarresse et al. [7, 8, 9]. These

authors characterized such solutions as `silent universes', because the time -

evolution equations form a set of ordinary di�erential equations. In [5] it

was shown that all the integrability conditions for this case are satis�ed

and are consistent, provided the initial constraint equations are satis�ed.
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Then the development along each world line is independent of those along

neighbouring world lines; once the evolution is underway, no information is

exchanged between neighbouring particles.

The dynamics of such universes have been studied mostly by employing

an orthonormal tetrad, which is a simultaneous eigentetrad of the shear �ab

and the \electric" part of the Weyl tensor Eab. Variables de�ned in terms of

these tetrads allow development of useful phase - plane portraits [2], which

show inter alia that the generic collapse con�guration is a cigar or spindle

rather than a pancake.

In the linear theory, the magnetic part of the Weyl tensor Hab only con-

tains vector and tensor modes [1]; also if vorticity is zero, no vector modes are

present, and Hab at most contains tensor modes with vanishing divergence,

which describe gravitational waves. In the non - linear theory the physical

content of Hab is however less clear. At the core of the dynamics of silent

universe is the assumption that in the absence of Hab, no gravitational waves

occur.

For irrotational dust the shear tensor is consistently diagonalizable with

its covariant time derivative: �ab = 0 = _�ab; a 6= b, if and only if the

divergence of the magnetic Weyl tensor vanishes. Furthermore if the electric

Weyl tensor vanishes then the magnetic Weyl tensor vanishes [6]. So for

irrotational dust there are no solutions with a purely magnetic Weyl tensor.

The aim of this paper is to prove that for irrotational dust there are no

consistent solutions with a non-vanishing magnetic part of the Weyl tensor

that has a vanishing divergence. Thus the only consistent solutions with

vanishing divergence of Hab are those described by the silent universes [2,7-

9]. Mathematically, we start from the requirement that the shear tensor �ab

is consistently diagonalizable with _�ab. We then prove that this is possible

i� divH = 0 ([6]). This is a dynamical restriction, for it is a constraint

on the gravitational tidal �eld. The implication of this is seen in the time

derivative of the Ricci constraints (which prescribes spatial restrictions on

both variables �ab; Hab), and this yields Hab = 0.

Notation: Latin indices run from 0 to 3, and Greek indices from 1 to 3;

semicolons denote covariant derivatives. Covariant di�erentiation along the

velocity vector ua
is denoted by (

:
) e.g., the acceleration vector is aa � _ua :=

ua;bu
b
. Kinematic and dynamic quantities are the same as in the other papers

of this series (they are comprehensively de�ned in [4]).
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2 Equations for Kinematic and Dynamic

Quantities

2.1 Conservation Equations

For a perfect uid, the uid acceleration is only determined by pressure

gradients so the restriction of vanishing pressure implies that aa = 0. This

means that each uid element moves along a geodesic. The conservation of

energy and momentum T ab
;b = 0 leads to only one equation, the continuity

equation:

_� = ��� : (1)

2.2 The Ricci identities

With the second restriction of vanishing vorticity !ab = 0, the equations

for the kinematic quantities follow from the Ricci identity: ua;d;c � ua;c;d =

Rabcdu
b
.

2.2.1 Propagation equations

The expansion scalar � obeys the Raychaudhuri equation:

_� +
1
3
�

2
+ 2�2

+
1
2
�� = 0 ; (2)

where �2 � 1
2
�ab�ab is the shear scalar and � = 8�G is the gravitational

constant. The remaining kinematic evolution equation is for the shear and

is given by:

_�ab + �ac�
c
b �

2
3
�2hab +

2
3
��ab + Eab = 0 ; (3)

where Eac = E(ac) � Cabcdu
bud

is the \electric" part of the Weyl tensor

Cabcd (satisfying Eacu
c
= 0, Ea

a = 0). Eab is that part of the gravitational

�eld which describes tidal interactions. The Weyl tensor can be decomposed

into Eab and another tensor called the \magnetic" part: Hac = H(ac) �
1
2
�ab

ghCghcdu
bud

(satisfying Hacu
c
= 0, Ha

a = 0). This is the part of the

gravitational �eld that describes gravo -magnetic e�ects, and gravitational

waves.
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2.2.2 Constraint equations

Besides the evolution equations for the kinematical equations, there are sev-

eral constraints that our variables must satisfy. On setting p = !ab = 0 we

obtain as non - trivial constraints,

he
b

�
2
3
�

;b � hd
c�

bc
;d

�
= 0 ; (4)

the `(0; �)' �eld equations, and

Had = �ht
ah

s
d�(t

b;c�s)fbcu
f : (5)

which we refer to as the `Hab' constraint, also (4) and (5) are both referred

to as Ricci constraints. As we are considering the zero - vorticity case, we can

also write down the Gauss -Codacci equations for the 3 - spaces orthogonal

to ua
(see [4]); however we do not need them for what follows.

2.3 Bianchi identities

Additionally, the Bianchi identities must be satis�ed, as they are the inte-

grability conditions for the other equations.

With the restrictions we have put on so far, they take the form:

ht
ah

d
sE

as
;d � �tbpqub�

d
qHdq =

1
3
ht

b�
;b ; (6)

hm
ah

t
c
_Eac

+ hmt�abEab +�Emt
+ Jmt � 3Es

(m�t)s
= �1

2
��tm ; (7)

which we refer to as the \div E" and \ _E" equations respectively, and

ht
aH

as
;dh

d
s + �tbpqub�

d
pEqd = 0 ; (8)

hm
ah

t
c
_Hac

+ hmt�abHab +�Hmt � Imt � 3Hs
(m�t)s

= 0 ; (9)

which are the \div H" and \ _H" equations respectively, where we have de�ned

the curls of E and H respectively as

'Curl E' : Imt
= �ha

(m�t)rsdurE
a
s;d (10)

'Curl H' : Jmt
= ha

(m�t)rsdurH
a
s;d : (11)

The Bianchi identities are analogous to Maxwell's electromagnetic equation

[4]. The gradient
1
3
hb
a�;b acts as a source of the divergence of the Eab �eld
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in the \div E" constraint. For zero vorticity the Hab �eld is source - free in

the \div H" constraint. In the case of the time - development equations the

\curl E" term Imt
acts as a source of _H. On the other hand

1
2
��tm

acts as a

source of _E, as well as the \curl H" source term Jmt
.

3 Tetrad Description

We now show that the shear tensor �ab is diagonalizable in the same principal

frame as _�ab i� div Hab = 0.

We �rst introduce an orthonormal tetrad that diagonalizes the shear ten-

sor i.e,

�ab = 0 (a 6= b) : (12)

This immediately implies @�ab=@� = 0 for (a 6= b), where u = @=@� , but this

gives no direct restrictions on _�ab because of the rotation coe�cient terms

in those quantities. However from (3) the tetrad satisfying (12) also satis�es

_�ab = 0 for a 6= b provided

Eab = 0 (a 6= b) (13)

in this tetrad. From the \div H" equation (8), equations (12) and (13) imply

that

divH = ht
aH

as
;dh

d
s = 0 : (14)

Conversely if divH = 0 then �ab and Eab are simultaneously diagonalizable

from (8), as shown in [3]; furthermore then _�ab = 0 for a 6= b from (3).

Hence, For irrotational dust the shear tensor is consistently diagonalizable

with its covariant time derivative: �ab = 0 = _�ab for a 6= b, if and only if the

divergence of the magnetic Weyl tensor vanishes.

We now adopt the assumption that div H = 0, as de�ned by equation

(14); and choose the preferred frame that diagonalizes �ab and _�ab. For

simplicity we denote �aa (no sum) by �a, and Eaa by Ea. Both the shear

tensor �ab and the 'electric' part of the Weyl tensor Eab satisfy the trace-free

property, i.e.,

E1 + E2 + E3 = 0 ;

�1 + �2 + �3 = 0 : (15)
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If we now write out 0 = _�ab = �ab;cu
c
for (a 6= b), we get the following tetrad

relation:

(�a � �b)�
a
0b = 0; a 6= b (16)

where uc
= �c0 and uaua = �1. For an arbitrary shear tensor one may deduce

from (16) that

�
a
0b = 0 (a 6= b) ; (17)

and hence the tetrad is Fermi-propagated along ua. Condition (17) can also

be shown to be valid for the case of degenerate shear. This is achieved by

performing a rotation in the degenerate plane and using this tetrad freedom

to obtain (17), see [6]. Furthermore for dust the vanishing of vorticity in a

shear eigenframe is equivalent to the conditions

�
0
ab = 0 : (18)

Now by (17) and the diagonality of Eab, it follows that also
_Eab is diagonal:

_Eab = (Ea �Eb)�
a
0b = 0; a 6= b:

Then from the time development equation (7) it follows that \curl H" is also

diagonal i.e.,

Jmt
= ha

(m�t)rsdurH
a
s;d = 0 ; m 6= t : (19)

Consistent with the rest of the notation, we denote Jaa by Ja. Then the fact

it is trace free becomes J1 + J2 + J3 = 0.

3.1 Propagation equations

Equations (1)-(9) governing the evolution of irrotational dust may now be

written as a set of propagation equations tied to a set of constraint equations.

A direct conversion of equations (1), (2), (3) and (7) into a tetrad system

which is an eigenframe for both the shear tensor and the electric Weyl tensor

yields the following time-evolution equations:

_� = ��� ;

_� = �1
3
�

2 � (�1
2
+ �2

2
+ �3

2
)� 1

2
� ;

_�� = �(��)
2 � 2

3
��� +

1
3
(�1

2
+ �2

2
+ �3

2
)� E� ;

_E� = ��E� �
1
2
��� � J� + 3��E� � (�1E1 + �2E2 + �3E3) ; (20)
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where � = 1; 2; 3 and no sum is carried out. The propagation equation for

the magnetic Weyl tensor Hab follows from the Bianchi identity (9) and has

the form

_H11 = ��H11 + 3�1H11 + I11 � (�1H11 + �2H22 + �3H33) ;

_H22 = ��H22 + 3�2H22 + I22 � (�1H11 + �2H22 + �3H33) ;

_H33 = ��H33 + 3�3H33 + I33 � (�1H11 + �2H22 + �3H33) ; (21)

_H23 = ��H23 �
3
2
�1H23 + I23 ;

_H12 = ��H12 �
3
2
�3H12 + I12 ;

_H31 = ��H31 �
3
2
�2H31 + I31 : (22)

It is important to note that in each of these equations, the left hand side

is in terms of the covariant derivative _T = T;au
a
, and so in general involves

rotation coe�cients; for example, in the obvious notation, the left-hand side

of the 3rd equation (20) is

_�� = ��;0 � 2���
�
0� (no sum) (23)

and that of the 4th equation is

_E� = E�;0 � 2E��
�
0� (no sum): (24)

3.2 Ricci Constraints

The tetrad form of the Ricci constraints (4), (5) are as follows: the \(0; �)"

�eld equations (4) take the form

2
3
@1� = @1�1 + (�1 � �2)�

2
21 + (�1 � �3)�

3
31 ;

2
3
@2� = @2�2 + (�2 � �1)�

1
12 + (�2 � �3)�

3
32 ;

2
3
@3� = @3�3 + (�3 � �1)�

1
13 + (�3 � �2)�

2
23 : (25)

The \Hab" equations (5) take the form

H11 = �
1
23(�3 � �1)� �

1
32(�2 � �1) ;

H22 = �
2
31(�1 � �2)� �

2
13(�3 � �2) ;

H33 = �
3
12(�2 � �3)� �

3
21(�1 � �3) ; (26)
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H23 =
1
2
[@1(�2 � �3) + �

3
31(�1 � �3)� �

2
21(�1 � �2)] ;

H31 =
1
2
[@2(�3 � �1) + �

3
32(�3 � �2)� �

1
12(�1 � �2)] ;

H12 =
1
2
[@3(�1 � �2) + �

1
13(�1 � �3)� �

2
23(�2 � �3)] : (27)

3.3 Form of Hab

Given our choice of a tetrad frame which diagonalizes �ab (and hence accord-

ing to theorem 1, divH = 0) we show below that consistency of the Ricci

constraint requires that Hab = 0.

To calculate time derivatives of the constraints we �rst start from the

covariant form of the constraint equation, say (G) and then take the time

derivative as de�ned by (G_
) � (G);au

a
. We commute derivatives and use the

constraint equations; the result is then converted to tetrad form. We give

an example of such a calculation in Appendix A (using the 'Hab' constraint).

This approach avoids any direct calculations of the time derivatives of Ricci

coe�cients �
a
bc.

The time derivative of the \(0; �)" constraint (4) in covariant form is

0 = heb
h
2
3
(�;b)

: � hd
c (�b

c
;d)

:
i
: (28)

If we use

(�;b)
:
=

�
_�

�
;b
��;pu

p
;b ; (29)

(�b
c
;d)

:
= ( _�b

c
);d � �b

c
;pu

p
;d +Rc

qpd�b
qup �Rq

bpd�q
cup

(30)

and substituting into (28) we get

0 = heb

��
_�

�
;b
��;pu

p
;b � hd

c

n
( _�b

c
);d � �b

c
;pu

p
;d

o�

�hebhd
c fR

c
qpd�b

qup �Rq
bpd�q

cupg : (31)

We may now convert (31) into tetrad form and use (20) and (25). The

Riemann tensor is given in terms of the Weyl tensor in Appendix A. On

further simpli�cation (see that Appendix for details) we obtain

0 = (�2 � �3)H23 ; 0 = (�3 � �1)H31 ; 0 = (�1 � �2)H12 : (32)
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The time derivative of the \Hab" constraint (4) in covariant form may be

written as

_Had = h(t
aH

s)
d�

c
fbsu

f

��
_�b

t

�
;c
� �b

t;pu
p
;c +Rb

qpc�
q
tu

p �Rq
tpc�

b
qu

p

�
: (33)

The tetrad form of (33) for a 6= b yields

0 = �1H23 ; 0 = �2H31 ; 0 = �3H12 (34)

(see the Appendix B for details).

For nonzero shear conditions (32) and (34) yields

H12 = H23 = H31 = 0; (35)

and thus the \magnetic" part of the Weyl tensor Hab is also diagonal.

Through the _H equations, this implies curl E too is diagonal. We henceforth

write Haa as Ha; then the trace free property of Hab is

H1 +H2 +H3 = 0 : (36)

The tetrad form of (33) for a = b yields (see Appendix B)

�1H1 = �2H2 = �3H3 ; (37)

We point out that diagonal property (35) of Hab was not used in obtaining

(37). We now introduce a constant � that relates the shear eigenvalue �1 = �

to �2 as follows

�1 = �; �2 = �� : (38)

If the shear tensor is degenerate in the e1; e2 plane then � = 1. Now equation

(37) �1H1 = �2H2 prescribes the following relation on the eigenvalues H1;H2

of the magnetic Weyl tensor:

H1 = �H; H2 = H : (39)

The trace-free property yields

�3 = �(1 + �)� ; H3 = �(1 + �)H ; (40)
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so now from (37) if we use �1H1 = �3H3 we obtain

0 = (1 + � + �2
)�H (41)

The following cases satisfy (41)

Case A: H = 0 with � 6= 0 and � remaining arbitrary. This case include

degenerate shear, � = 1, and is studied in [2, 7, 8, 9] and [5]. Variables de�ned

in terms of the above tetrad frame allow development of useful phase - plane

portraits, which show inter alia that the generic collapse con�guration is a

cigar or spindle rather than a pancake.

Case B: � = 0. For this case all the shear eigenvalues vanish and this

implies H = 0 and E = 0 and the model is FRW.

Case C: (1+ �+ �2
) = 0. The values of � are complex. The magnitudes

of the shear tensor �mag and the magnetic Weyl tensor Hmag have the tetrad

form

�mag =
1
2
(�1

2
+ �2

2
+ �3

2
):

Hmag = H1
2
+H2

2
+H3

2 : (42)

On using (38) and (40) for this case we get

�mag = (1 + �+ �2
)�2

= 0; Hmag = (1 + � + �2
)H2

= 0 (43)

and hence both shear and the magnetic Weyl tensor are zero, leading to the

same results as case B above.

Thus we can formulate the following

Theorem:

For irrotational dust the divergence of the magnetic Weyl tensor

vanishes, divH = 0 (or equivalently the shear tensor is consis-

tently diagonalizable) if and only if the magnetic Weyl tensor

vanishes, Hab = 0.

4 Conclusion

For irrotational dust � 6= 0 the existence of a tetrad frame which is a principal

frame for the shear tensor �ab and its covariant time derivative _�ab requires

that the divergence of the magnetic Weyl tensor vanish. We have shown

10



here that if we employ this frame then the magnetic Weyl tensor itself van-

ishes; Hab = 0, as a consistency requirement of the Ricci constraints. This

establishes a new property, that the only consistent solutions for irrotational

dust with vanishing div H are those described as the `silent' universe [2],[5].

Hence gravitational waves interacting with irrotational dust will have to have

div H 6= 0, contrary to the usual result of linearised theory.

The key point here is that (assuming the uid is irrotational), our result

comes from the second term in the `div H' equation (8); but when we linearise,

that term is necessarily second order. Thus always DivH = 0 (to �rst order)

in the linear case. Hence our exact result comes from a term which plays

no role in the linearised theory, if we discard all second order terms in all

equations; in this case the surviving Riemann terms would be disregarded

(as they always consist of a Weyl tensor component, which is �rst order,

multiplying a �rst order quantity: see (32), (34), (37)).

However this argument needs to be treated with care. One needs to recall

that second order terms can only be dropped from an equation if there is a

non-zero �rst order term present, so that the second-order term is negligible

relative to the �rst-order one. However this argument cannot be applied

to the key equation (8): both terms are second order, and as there is no

�rst order term, we have to ensure that the equation is true to second order

accuracy. Thus even in linearised theory, we cannot ignore this second-order

equation. The following intriguing situation results: if we have a linearised

solution where Hab 6= 0 and div H is non-zero but second order, we can

presumably get a consistent solution. If however Hab 6= 0 with div H exactly

zero, the solution will not be consistent - because of the above proof.

Thus in the linear theory, it is possible to have models where Div H =

0 to second order but Hab 6= 0, and indeed that is usually assumed for

gravitational waves. Our result (for irrotational dust only) shows that in this

case in fact we must have div H 6= 0, although it is second order. We have

therefore an example of linearization instability in that the usual process of

linearization leads to a di�erent answer than the exact result - which in fact

constrains the linearised solution, even though this is usually not commented

on.
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A Time propagation of the \(0; �)" constraint

The covariant form of the \(0; �)" constraint (4) is

he
b

�
2
3
�

;b � hd
c�

bc
;d

�
= 0 ; (44)
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with tetrad form

2
3
@1� = @1�1 + (�1 � �2)�

2
21 + (�1 � �3)�

3
31 ;

2
3
@2� = @2�2 + (�2 � �1)�

1
12(�2 � �3)�

3
32 ;

2
3
@3� = @3�3 + (�3 � �1)�

1
13 + (�3 � �2)�

2
23 ; (45)

The covariant time propagation of (44) is (31),

0 = heb
h
2
3
(�;b)

:
� hd

c (�b
c
;d)

:
i

= heb

��
_�

�
;b
��;pu

p
;b � hd

c

n
( _�b

c
);d � �b

c
;pu

p
;d

o�

�hebhd
c fR

c
qpd�b

qup �Rq
bpd�q

cupg : (46)

We now write the Riemann tensor Rs
mpc in the terms of the Weyl tensor as

Rs
mpc = Cs

mpc +
1
2
(gspRcm + gscRpm � gmpR

s
c + gmcR

s
p)

�
R

6

(gspgcm � gscgpm) (47)

where

Cs
mpc � (�smij�pckl + gsmijgpckl)u

iukEbd

+(�smijgpckl + �pcklg
s
mij)u

iukHbd
; (48)

and

gsmij � gsigmj � gsjgmi : (49)

The two terms involving the Riemann tensor Ra
bcd in (46) may be written in

covariant form as

(RT )e = �hebhd
c [R

c
qpd�b

qup �Rq
bpd�q

cup
]

= �hebhd
cu

p
h
1
2
�q

b (g
c
pRqd + gcdRqp � gqpR

c
d + gqdR

c
p)

�1
2
�c

q (g
q
pRbd + gqdRbp � gbpR

q
d + gbdR

q
p)

�R

6
�q

b (g
c
pgqd � gcdgqp) +

R

6
�c

q (g
q
pgbd � gqdgbp)

i

� hebhd
cu

puiukEjl
[�q

b�
c
qij�pdkl + �q

b (g
c
igqj � gcjgqi) (gpkgdl � gplgdk)
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��c
q�

q
bij�pdkl � �c

q (g
q
igbj � gqjgbi) (gpkgdl � gplgdk)]

� hebhd
cu

puiukHjl
[�q

b�
c
qij (gpkgdl � gplgdk)� �c

q�
q
bij (gpkgdl � gplgdk)

+�q
b�pdkl (g

c
igqj � gcjgqi)� �c

q�pdkl (g
q
igcj � gqjgci)] : (50)

The only non-vanishing terms in (50) are

(RT )e = �hebhd
cu

puiukHjl
[�q

b�
c
qijgpkgdl � �c

q�
q
bijgpkgdl]

= �cqij�
eqHj

cu
i � heb�qbij�qlH

jlui : (51)

The tetrad form of (51) becomes

(RT )e = �cq0j�
eqHj

c � �qe0j�qlH
jl : (52)

and from (52) for e = 1 we obtain

(RT )1 = �cq0j�
1qHj

c � �q10j�qlH
jl

= �3102�
1H2

3 + �2103�
1H3

2 � �3102�3H
23 � �2103�2H

32

= H23(�3 � �2) : (53)

Similarly from (52) for e = 2; 3 we get

(RT )2 = H31(�1 � �3) ;

(RT )3 = H12(�2 � �1) : (54)

We now focus on the tetrad form of the time propagation equation (46)

for e = 1; in expanded form this becomes

0 =
2
3

h
@1 _� � �1@1�

i
� [@1 _�1 � �1@1�1]

��2
21 [( _�1 � _�2)� �2(�1 � �2)]� �

3
31 [( _�1 � _�3)� �3(�1 � �3)]

+H23(�3 � �2) ; (55)

where the last term on the right hand side is the contribution of the Riemann

term (RT )1 calculated in (53). On using _� and _�� from equation (20) we get

0 =
2
3

h
�2

3
�@1� � @1(�1

2
+ �2

2
+ �3

2
)� 1

2
@1�� (�1 +

1
3
�)@1�

i

�
h
�2�1@1�1 �

2
3
�@1�1 �

2
3
�1@1� +

1
3
@1(�1

2
+ �2

2
+ �3

2
)� �1@1�1

14



�@1E1 � (�1 +
1
3
�)@1�1

i

��2
21

h
�(�1

2 � �2
2
)� 2

3
�(�1 � �2)� (E1 � E2)� (�2 +

1
3
�)(�1 � �2)

i

��3
31

h
�(�1

2 � �3
2
)� 2

3
�(�1 � �3)� (E1 � E3)� (�3 +

1
3
�)(�1 � �3)

i

+H23(�3 � �2) ; (56)

where we also used ua;b = �ab +
1
3
�hab and �� = �� +

1
3
�. We now apply to

(56) the \(0; �)" constraint (45) and the \div E" constraint written here in

tetrad form as

1
3
@1� = @1E1 + (E1 � E2)�

2
21 + (E1 � E3)�

3
31 +H23(�3 � �2) ;

1
3
@2� = @2E2 + (E2 � E1)�

1
12 + (E2 � E3)�

3
32 +H31(�1 � �3) ;

1
3
@3� = @3E3 + (E3 � E1)�

1
13 + (E3 � E2)�

2
23 +H12(�2 � �1) : (57)

to obtain the following form of (56)

0 = 3�1@1�1 � @1(�1
2
+ �2

2
+ �3

2
)

��2
21(�1 � �2)(�3 � �2)� �

3
31(�1 � �3)(�2 � �3) : (58)

The �rst term on the right of (58) simpli�es as follows

3�1@1�1 � @1(�1
2
+ �2

2
+ �3

2
)

= 3�1@1�1 � 2�1@1�1 � @1(�2
2
+ �3

2
)

= �1@1�1 � @1(�2
2
+ �3

2
)

=
1
2
@1(��1

2 � 2�2
2 � 2�3

2
)

=
1
2
@1[(�2 � �3)

2 � 2�2
2 � 2�3

2
]

= �1
2
@1(�2

2 � 2�2�3 + �3
2
)

= �1
2
@1(�2 � �3)

2

= �(�2 � �3)@1(�2 � �3) ; (59)

so now (59) in (58) gives

0 = (�2 � �3)

h
@1(�3 � �2) + �

2
21(�1 � �2)� �

3
31(�1 � �3)

i

= (�2 � �3)H23 ; (60)

where in the last step we used the \H23" constraint (27)

H23 =
1
2
[@1(�2 � �3)� �

2
21(�1 � �2) + �

3
31(�1 � �3)] : (61)
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Similar relations to (60) follows for e = 2; 3 in (46) these are

0 = (�3 � �1)H31 ;

0 = (�1 � �2)H12 ; (62)

Thus we have derived the required equations (32).

B The time derivative of the Hab constraint

We �rst write the covariant form (5) of the \Hab" constraint as

Had = �ht
ah

s
d�

b
(t
;c�s)fbcu

f :

= �1
2
ht

ah
s
du

f
h
�b

t;c�sfb
c
+ �b

s;c�tfb
c
i
: (63)

If we use

(�b
s;c
_
) = ( _�b

s);c � �b
s;pu

p
;c +Rb

qpc�
q
su

p �Rq
spc�

b
qu

p ; (64)

the time propagation of (63) becomes

_Had = �1
2
ht

ah
s
du

f
h
�sfb

c
n
( _�b

t);c � �b
t;pu

p
;c

o
+ �tfb

c
n
( _�b

s);c � �b
s;pu

p
;c

o
]

�1
2
ht

ah
s
du

f
h
�sfb

c
n
Rb

qpc�
q
tu

p �Rq
tpc�

b
qu

p
o
+ �tfb

c
n
Rb

qpc�
q
su

p �Rq
spc�

b
qu

p
o
] :(65)

Using the Riemann tensor Rs
mpc expression as given in the previous Ap-

pendix, the two terms involving the Riemann tensor Ra
bcd in (65) may be

written in covariant form as

(RT )ad = �1
2
ht

ah
s
du

f
h
�sfb

c
n
Rb

qpc�
q
tu

p �Rq
tpc�

b
qu

p
o

+�tfb
c
n
Rb

qpc�
q
su

p �Rq
spc�

b
qu

p
oi

= �1
2
ht

ah
s
du

f�sfb
c
h
1
2
�q

t

�
gbpRqc + gbpRqp � gqpR

b
c + gqcR

b
p

�

�1
2
�b

q (g
q
pRtc + gqcRtp � gtpR

q
c + gtcR

q
p)

�R

6
�q

t

�
gbpgqc � gbcgqp

�
+

R

6
�b

q (g
q
pgtc � gqcgtp)

+ uiukEjl
n
�q

t�
b
qij�pckl + �q

t

�
gbigqj � gbjgqi

�
(gpkgcl � gplgck)
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��b
q�

q
tij�pckl � �b

q (g
q
igtj � gqjgti) (gpkgcl � gplgck)

o

+ uiukHjl
n
�q

t�
b
qij (gpkgcl � gplgck)� �b

q�
q
tij (gpkgcl � gplgck)

+�q
t�pckl

�
gbigqj � gbjgqi

�
� �b

q�pckl (g
q
igtj � gqjgti)

oi

� 1
2
ht

ah
s
du

f�tfb
c
h
1
2
�q

s

�
gbpRqc + gbpRqp � gqpR

b
c + gqcR

b
p

�

�1
2
�b

q (g
q
pRsc + gqcRsp � gspR

q
c + gscR

q
p)

�R

6
�q

s

�
gbpgqc � gbcgqp

�
+

R

6
�b

q (g
q
pgsc � gqcgsp)

+ uiukEjl
n
�q

s�
b
qij�pckl + �q

s

�
gbigqj � gbjgqi

�
(gpkgcl � gplgck)

��b
q�

q
sij�pckl � �b

q (g
q
igsj � gqjgsi) (gpkgcl � gplgck)

o

+ uiukHjl f �q
s�

b
qij (gpkgcl � gplgck)� �b

q�
q
sij (gpkgcl � gplgck)

+�q
s�pckl

�
gbigqj � gbjgqi

�
� �b

q�pckl (g
q
igsj � gqjgsi)

oi
: (66)

The only non-vanishing terms in (66) are those containing Hjl
i.e,

(RT )ad = �1
2
ht

ah
s
du

f�sfb
cuiukHjl

�
�q

t�
b
qijgpkgcl � �b

q�
q
tijgpkgcl

�

�1
2
ht

ah
s
du

f�tfb
cuiukHjl

�
�q

s�
b
qijgpkgcl � �b

q�
q
sijgpkgcl

�

= �1
2
ht

ah
s
du

fupuiukHj
c

h
�sfb

c
�
gpk�

b
qij�

q
t � gpk�

q
tij�

b
q

�

+�tfb
c
�
gpk�

b
qij�

q
s � gpk�

q
sij�

b
q

�
]

=
1
2
ht

ah
s
du

fuiHj
c

h
�sfb

c
�
�bqij�

q
t � �qtij�

b
q

�

+�tfb
cuf

�
�bqij�

q
s � �qsij�

b
q

�
] : (67)

Equation (67) represent the covariant form of the Riemann term. The tetrad

form of (67) for diagonal elements a = d becomes

(RT )aa = �a0b
c�ba0jH

j
c(�a � �b) : (68)

and hence

(RT )11 = H3(�1 � �2) +H2(�1 � �3) ;
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(RT )22 = H1(�2 � �3) +H3(�2 � �1) ;

(RT )33 = H2(�3 � �1) +H1(�3 � �2) : (69)

The tetrad form of the time propagation equation (65) for a = d now becomes

_Haa = ��a0b
c
h
@c _�

b
a � �c@�

b
a + �

b
ca f( _�a � _�b)g � �c(�a � �b)

i

+(RT )aa (no sum over) a : (70)

For a = 1 (70) becomes

_H11 = �
3
21 [( _�1 � _�3)� �2(�1 � �3)]� �

2
31 [( _�1 � _�2)� �3(�1 � �2)] + (RT )11 :

(71)

On using _�� in (20) and constraint (26) we get

_H11 = ��H11 + I11 + (RT )11 : (72)

If we compare with the propagation equation for _H11 in (21) i.e.,

_H11 = ��H11 + I11 + 3�1H11 � (�1H11 + �2H22 + �3H33) ; (73)

we get

3�1H11 � (�1H11 + �2H22 + �3H33)

= (RT )11 = H3(�1 � �2) +H2(�1 � �3) : (74)

We note however that

3�1H11 � (�1H11 + �2H22 + �3H33) = 2�1H11 � �2H22 � �3H33

= [�1H11 � �2H22] + [�1H11 � �3H33]

= [�1H11 + (�1 + �3)H22] + [�1H11 + (�1 + �2)H33]

= [�1(H11 +H22) + �3H22] + [�1(H11 +H33) + �2H33]

= ��1H33 + �3H22 � �1H22 + �2H33

= H33(�2 � �1) +H22(�3 � �1)

= �(RT )11 : (75)

Thus (74) together with (75) gives

0 = 3�1H11 � (�1H11 + �2H22 + �3H33) ; (76)

0 = (RT )11 = H3(�1 � �2) +H2(�1 � �3) : (77)
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Similar results hold for a = d = 2 and a = d = 3 respectively

0 = 3�2H22 � (�1H11 + �2H22 + �3H33) ; (78)

0 = (RT )22 = H1(�2 � �3) +H3(�2 � �1) : (79)

0 = 3�3H33 � (�1H11 + �2H22 + �3H33) ; (80)

0 = (RT )33 = H2(�3 � �1) +H1(�3 � �2) : (81)

If we write (77),(79),(81) together we get

0 = (RT )11 = H3(�1 � �2) +H2(�1 � �3) ; (82)

0 = (RT )22 = H1(�2 � �3) +H3(�2 � �1) ; (83)

0 = (RT )33 = H2(�3 � �1) +H1(�3 � �2) ; (84)

which are consistent with each other.

Similarly if we write equations (76),(78),(80) which are equivalent to

(77),(79),(81) we get

0 = 3�1H11 � (�1H11 + �2H22 + �3H33) ; (85)

0 = 3�2H22 � (�1H11 + �2H22 + �3H33) ; (86)

0 = 3�3H33 � (�1H11 + �2H22 + �3H33) ; (87)

(88)

from which it follows that

�1H11 = �2H22 = �3H33 : (89)

Equation (89), which is the required equation (37), is a condition arising

from consistency requirement on the \Had" for a = d.

Similarly for non-diagonal elements a 6= b equation (67)

(RT )23 =
3
2
�1H23 ; (RT )31 =

3
2
�2H31 ; (RT )12 =

3
2
�3H12 ; (90)

and the time propagation equation (65) yields

�1H23 = 0 ; (a = 2; d = 3) ;

�2H13 = 0 ; (a = 1; d = 3) ;

�3H12 = 0 ; (a = 1; d = 2) : (91)

which is the required equation (34).

||||||||-
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