8,113 research outputs found
Different approaches to community detection
A precise definition of what constitutes a community in networks has remained
elusive. Consequently, network scientists have compared community detection
algorithms on benchmark networks with a particular form of community structure
and classified them based on the mathematical techniques they employ. However,
this comparison can be misleading because apparent similarities in their
mathematical machinery can disguise different reasons for why we would want to
employ community detection in the first place. Here we provide a focused review
of these different motivations that underpin community detection. This
problem-driven classification is useful in applied network science, where it is
important to select an appropriate algorithm for the given purpose. Moreover,
highlighting the different approaches to community detection also delineates
the many lines of research and points out open directions and avenues for
future research.Comment: 14 pages, 2 figures. Written as a chapter for forthcoming Advances in
network clustering and blockmodeling, and based on an extended version of The
many facets of community detection in complex networks, Appl. Netw. Sci. 2: 4
(2017) by the same author
Finding local community structure in networks
Although the inference of global community structure in networks has recently
become a topic of great interest in the physics community, all such algorithms
require that the graph be completely known. Here, we define both a measure of
local community structure and an algorithm that infers the hierarchy of
communities that enclose a given vertex by exploring the graph one vertex at a
time. This algorithm runs in time O(d*k^2) for general graphs when is the
mean degree and k is the number of vertices to be explored. For graphs where
exploring a new vertex is time-consuming, the running time is linear, O(k). We
show that on computer-generated graphs this technique compares favorably to
algorithms that require global knowledge. We also use this algorithm to extract
meaningful local clustering information in the large recommender network of an
online retailer and show the existence of mesoscopic structure.Comment: 7 pages, 6 figure
Asymptotic behavior of the number of Eulerian orientations of graphs
We consider the class of simple graphs with large algebraic connectivity (the
second-smallest eigenvalue of the Laplacian matrix). For this class of graphs
we determine the asymptotic behavior of the number of Eulerian orientations. In
addition, we establish some new properties of the Laplacian matrix, as well as
an estimate of a conditionality of matrices with the asymptotic diagonal
predominanceComment: arXiv admin note: text overlap with arXiv:1104.304
A measure of centrality based on the spectrum of the Laplacian
We introduce a family of new centralities, the k-spectral centralities.
k-Spectral centrality is a measurement of importance with respect to the
deformation of the graph Laplacian associated with the graph. Due to this
connection, k-spectral centralities have various interpretations in terms of
spectrally determined information.
We explore this centrality in the context of several examples. While for
sparse unweighted networks 1-spectral centrality behaves similarly to other
standard centralities, for dense weighted networks they show different
properties. In summary, the k-spectral centralities provide a novel and useful
measurement of relevance (for single network elements as well as whole
subnetworks) distinct from other known measures.Comment: 12 pages, 6 figures, 2 table
Finding community structure in very large networks
The discovery and analysis of community structure in networks is a topic of
considerable recent interest within the physics community, but most methods
proposed so far are unsuitable for very large networks because of their
computational cost. Here we present a hierarchical agglomeration algorithm for
detecting community structure which is faster than many competing algorithms:
its running time on a network with n vertices and m edges is O(m d log n) where
d is the depth of the dendrogram describing the community structure. Many
real-world networks are sparse and hierarchical, with m ~ n and d ~ log n, in
which case our algorithm runs in essentially linear time, O(n log^2 n). As an
example of the application of this algorithm we use it to analyze a network of
items for sale on the web-site of a large online retailer, items in the network
being linked if they are frequently purchased by the same buyer. The network
has more than 400,000 vertices and 2 million edges. We show that our algorithm
can extract meaningful communities from this network, revealing large-scale
patterns present in the purchasing habits of customers
Dynamic Computation of Network Statistics via Updating Schema
In this paper we derive an updating scheme for calculating some important
network statistics such as degree, clustering coefficient, etc., aiming at
reduce the amount of computation needed to track the evolving behavior of large
networks; and more importantly, to provide efficient methods for potential use
of modeling the evolution of networks. Using the updating scheme, the network
statistics can be computed and updated easily and much faster than
re-calculating each time for large evolving networks. The update formula can
also be used to determine which edge/node will lead to the extremal change of
network statistics, providing a way of predicting or designing evolution rule
of networks.Comment: 17 pages, 6 figure
Recommended from our members
Quantification of nitrogen balance components in a commercial broiler barn
Characterizing the respective nitrogen (N) use efficiency requires understanding the N flow of inputs and outputs from a commercial broiler barn. In this study, an N mass balance was performed for one entire growing cycle. The objectives were to quantify, sample, and analyze all N components entering and leaving the barn. The N from feed, chickens, and bedding material was considered as inputs, the outputs included the N accretion in mature broilers, the total N emissions (NTNE), the N accumulation in litter, and the N of mortality. Of particular relevance was the determination of an appropriate method to mirror the heterogenic texture of the litter. Litter samples were collected weekly according to a defined procedure. The major N input was feed N, accounting for 99% of the total N input. After the 36-day growing cycle, the N outputs were portioned as follows: 59% (1741.3 kg N) in mature broilers, 37% (1121.3 kg N) accumulated in litter, and 4% in NTNE (114.3 kg N). The N accumulations in broiler tissue and litter agree well with other studies. The measured emissions were consistently lower compared to other references, due to the fact that these references were mainly based on studies where broilers were raised on built-up litter. In contrast to in situ quantified N emissions in this study, other published values were assumed to be the difference of N between inputs and outputs. This study illustrates that extensive sampling of litter is a prerequisite for calculating litter masses. The accurate specification of the litter texture proved to be crucial within the mass balance approach. With this information, the feasible improvements within management practices can be identified
Random Walks Along the Streets and Canals in Compact Cities: Spectral analysis, Dynamical Modularity, Information, and Statistical Mechanics
Different models of random walks on the dual graphs of compact urban
structures are considered. Analysis of access times between streets helps to
detect the city modularity. The statistical mechanics approach to the ensembles
of lazy random walkers is developed. The complexity of city modularity can be
measured by an information-like parameter which plays the role of an individual
fingerprint of {\it Genius loci}.
Global structural properties of a city can be characterized by the
thermodynamical parameters calculated in the random walks problem.Comment: 44 pages, 22 figures, 2 table
Forced Symmetry Breaking from SO(3) to SO(2) for Rotating Waves on the Sphere
We consider a small SO(2)-equivariant perturbation of a reaction-diffusion
system on the sphere, which is equivariant with respect to the group SO(3) of
all rigid rotations. We consider a normally hyperbolic SO(3)-group orbit of a
rotating wave on the sphere that persists to a normally hyperbolic
SO(2)-invariant manifold . We investigate the effects of this
forced symmetry breaking by studying the perturbed dynamics induced on
by the above reaction-diffusion system. We prove that depending
on the frequency vectors of the rotating waves that form the relative
equilibrium SO(3)u_{0}, these rotating waves will give SO(2)-orbits of rotating
waves or SO(2)-orbits of modulated rotating waves (if some transversality
conditions hold). The orbital stability of these solutions is established as
well. Our main tools are the orbit space reduction, Poincare map and implicit
function theorem
- …