14,666 research outputs found

    Search for Variable Stars in the Globular Cluster M3

    Get PDF
    We describe here results of a photometric time-sequence survey of the globular cluster M3 (NGC 5272), in a search for contact and detached eclipsing binary stars. We have discovered only one likely eclipsing binary and one SX Phe type star in spite of monitoring 4077 stars with V<20.0V<20.0 and observing 25 blue stragglers. The newly identified SX Phe star, V237, shows a light curve with a variable amplitude. Variable V238 shows variability either with a period of 0.49 d or with a period of 0.25 d. On the cluster colour-magnitude diagram, the variable occupies a position a few hundredths of magnitude to the blue of the base of the red giant branch. V238 is a likely descendent of a binary blue straggler. As a side result we obtained high quality data for 42 of the previously known RR Lyrae variables, including 33 of Bailey type ab, 7 type c and 2 double-mode pulsators. We used equations that relate the physical properties of RRc stars to their pulsation periods and Fourier parameters to derive masses, luminosities, temperatures and helium parameters for five of the RRc stars. One of the RRd stars (V79) has switched modes. In previous studies, it was classified as RRab, but our observations show that it is an RRd star with the first overtone mode dominating. This indicates blueward evolution on the horizontal branch.Comment: 21 pages including 14 figures, Latex, requires mn.sty, psfig.sty. Submitted, MNRA

    Metabolomic profiling of macrophages determines the discrete metabolomic signature and metabolomic interactome triggered by polarising immune stimuli

    Get PDF
    Priming and activating immune stimuli have profound effects on macrophages, however, studies generally evaluate stimuli in isolation rather than in combination. In this study we have investigated the effects of pro-inflammatory and anti-inflammatory stimuli either alone or in combination on macrophage metabolism. These stimuli include host factors such as IFNγ and ovalbumin-immunoglobulin immune complexes, or pathogen factors such as LPS. Untargeted LC-MS based metabolomics provided an in-depth profile of the macrophage metabolome, and revealed specific changes in metabolite abundance upon either individual stimuli or combined stimuli. Here, by factoring in an interaction term in the linear model, we define the metabolome interactome. This approach allowed us to determine whether stimuli interact in a synergistic or antagonistic manner. In conclusion this study demonstrates a robust approach to interrogate immune-metabolism, especially systems that model host-pathogen interactions

    The Distance of the First Overtone RR Lyrae Variables in the MACHO LMC Database: A New Method to Correct for the Effects of Crowding

    Full text link
    Previous studies have indicated that many of the RR Lyrae variables in the LMC have properties similar to the ones in the Galactic globular cluster M3. Assuming that the M3 RR Lyrae variables follow the same relationships among period, temperature, amplitude and Fourier phase parameter phi31 as their LMC counterparts, we have used the M3 phi31-logP relation to identify the M3-like unevolved first overtone RR Lyrae variables in 16 fields near the LMC bar. The temperatures of these variables were calculated from the M3 logP-logTe relation so that the extinction could be derived for each star separately. Since blended stars have lower amplitudes for a given period, the period amplitude relation should be a useful tool for identifying which stars are affected by crowding. We find that the low amplitude stars are brighter. We remove them from the sample and derive an LMC distance modulus 18.49+/-0.11.Comment: 30 pages, 7 figures, accepted for publication in the Astronomical Journa

    Mesoscopic order and the dimentionality of long-range resonance energy transfer in supramolecular semiconductors

    Get PDF
    We present time-resolved photoluminescence measurements on two series of oligo-p-phenylenevinylene materials that self-assemble into supramolecular nanostructures with thermotropic reversibility in dodecane. One set of derivatives form chiral, helical stacks while the second set form less organised, frustrated stacks. Here we study the effects of supramolecular organisation on the resonance energy transfer rates. We measure these rates in nanoassemblies formed with mixed blends of oligomers and compare them with the rates predicted by Foerster theory. Our results and analysis show that control of supramolecular order in the nanometre lengthscale has a dominant effect on the efficiency and dimentionality of resonance energy transfer.Comment: 17 Pages, 5 Figures, Submitted to J. Chem. Phy

    Half-life Limit of 19Mg

    Full text link
    A search for 19Mg was performed using projectile fragmentation of a 150 MeV/nucleon 36Ar beam. No events of 19Mg were observed. From the time-of-flight through the fragment separator an upper limit of 22 ns for the half-life of 19Mg was established

    The full integration of black hole solutions to symmetric supergravity theories

    Get PDF
    We prove that all stationary and spherical symmetric black hole solutions to theories with symmetric target spaces are integrable and we provide an explicit integration method. This exact integration is based on the description of black hole solutions as geodesic curves on the moduli space of the theory when reduced over the time-like direction. These geodesic equations of motion can be rewritten as a specific Lax pair equation for which mathematicians have provided the integration algorithms when the initial conditions are described by a diagonalizable Lax matrix. On the other hand, solutions described by nilpotent Lax matrices, which originate from extremal regular (small) D = 4 black holes can be obtained as suitable limits of solutions obtained in the diagonalizable case, as we show on the generating geodesic (i.e. most general geodesic modulo global symmetries of the D = 3 model) corresponding to regular (and small) D = 4 black holes. As a byproduct of our analysis we give the explicit form of the Wick rotation connecting the orbits of BPS and non-BPS solutions in maximally supersymmetric supergravity and its STU truncation.Comment: 27 pages, typos corrected, references added, 1 figure added, Discussion on black holes and the generating geodesic significantly extended. Statement about the relation between the D=3 geodesics from BPS and non-BPS extreme black holes made explicit by defining the Wick rotation mapping the corresponding orbit

    Functional requirements for the man-vehicle systems research facility

    Get PDF
    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included

    Generalized Massive Gravity and Galilean Conformal Algebra in two dimensions

    Full text link
    Galilean conformal algebra (GCA) in two dimensions arises as contraction of two copies of the centrally extended Virasoro algebra (tt,xϵxt\rightarrow t, x\rightarrow\epsilon x with ϵ0\epsilon\rightarrow 0). The central charges of GCA can be expressed in term of Virasoro central charges. For finite and non-zero GCA central charges, the Virasoro central charges must behave as asymmetric form O(1)±O(1ϵ)O(1)\pm O(\frac{1}{\epsilon}). We propose that, the bulk description for 2d GCA with asymmetric central charges is given by general massive gravity (GMG) in three dimensions. It can be seen that, if the gravitational Chern-Simons coupling 1μ\frac{1}{\mu} behaves as of order O(1ϵ\frac{1}{\epsilon}) or (μϵμ\mu\rightarrow\epsilon\mu), the central charges of GMG have the above ϵ\epsilon dependence. So, in non-relativistic scaling limit μϵμ\mu\rightarrow\epsilon\mu, we calculated GCA parameters and finite entropy in term of gravity parameters mass and angular momentum of GMG.Comment: 9 page

    Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT massive gravity

    Full text link
    The theory of massive gravity in three dimensions recently proposed by Bergshoeff, Hohm and Townsend (BHT) is considered. At the special case when the theory admits a unique maximally symmetric solution, a conformally flat space that contains black holes and gravitational solitons for any value of the cosmological constant is found. For negative cosmological constant, the black hole is characterized in terms of the mass and the "gravitational hair" parameter, providing a lower bound for the mass. For negative mass parameter, the black hole acquires an inner horizon, and the entropy vanishes at the extremal case. Gravitational solitons and kinks, being regular everywhere, are obtained from a double Wick rotation of the black hole. A wormhole solution in vacuum that interpolates between two static universes of negative spatial curvature is obtained as a limiting case of the gravitational soliton with a suitable identification. The black hole and the gravitational soliton fit within a set of relaxed asymptotically AdS conditions as compared with the ones of Brown and Henneaux. In the case of positive cosmological constant the black hole possesses an event and a cosmological horizon, whose mass is bounded from above. Remarkably, the temperatures of the event and the cosmological horizons coincide, and at the extremal case one obtains the analogue of the Nariai solution, dS2×S1dS_{2}\times S^{1}. A gravitational soliton is also obtained through a double Wick rotation of the black hole. The Euclidean continuation of these solutions describes instantons with vanishing Euclidean action. For vanishing cosmological constant the black hole and the gravitational soliton are asymptotically locally flat spacetimes. The rotating solutions can be obtained by boosting the previous ones in the tϕt-\phi plane.Comment: Talk given at the "Workshop on Gravity in Three Dimensions," 14-24 April 2009, ESI, Vienna. 30 pages, 6 figures. V2: minor changes and section 6 slightly improved. Last version for JHE

    Extracting the depolarization coefficient D_NN from data measured with a full acceptance detector

    Full text link
    The spin transfer from vertically polarized beam protons to Lambda or Sigma hyperons of the associated strangeness production pp -> pK Lambda (Sigma) is described with the depolarization coefficient D_NN. As the polarization of the hyperons is determined by their weak decays, detectors, which have a large acceptance for the decay particles, are needed. In this paper a formula is derived, which describes the depolarization coefficient D_NN by count rates of a 4 pi detector. It is shown, that formulas, which are given in publications for detectors with restricted acceptance, are specific cases of this formula for a 4 pi detector.Comment: Accepted for publication by Nuclear Instruments and Methods in Physics Research Section
    corecore