418 research outputs found
The control of a nuclear reactor using helium- 3 gas control elements
Control system for water moderated reactor using helium-3 ga
Non-equilibrium dynamics of stochastic point processes with refractoriness
Stochastic point processes with refractoriness appear frequently in the
quantitative analysis of physical and biological systems, such as the
generation of action potentials by nerve cells, the release and reuptake of
vesicles at a synapse, and the counting of particles by detector devices. Here
we present an extension of renewal theory to describe ensembles of point
processes with time varying input. This is made possible by a representation in
terms of occupation numbers of two states: Active and refractory. The dynamics
of these occupation numbers follows a distributed delay differential equation.
In particular, our theory enables us to uncover the effect of refractoriness on
the time-dependent rate of an ensemble of encoding point processes in response
to modulation of the input. We present exact solutions that demonstrate generic
features, such as stochastic transients and oscillations in the step response
as well as resonances, phase jumps and frequency doubling in the transfer of
periodic signals. We show that a large class of renewal processes can indeed be
regarded as special cases of the model we analyze. Hence our approach
represents a widely applicable framework to define and analyze non-stationary
renewal processes.Comment: 8 pages, 4 figure
Spatiotemporal complexity of the universe at subhorizon scales
This is a short note on the spatiotemporal complexity of the dynamical
state(s) of the universe at subhorizon scales (up to 300 Mpc). There are
reasons, based mainly on infrared radiative divergences, to believe that one
can encounter a flicker noise in the time domain, while in the space domain,
the scaling laws are reflected in the (multi)fractal distribution of galaxies
and their clusters. There exist recent suggestions on a unifying treatment of
these two aspects within the concept of spatiotemporal complexity of dynamical
systems driven out of equilibrium. Spatiotemporal complexity of the subhorizon
dynamical state(s) of the universe is a conceptually nice idea and may lead to
progress in our understanding of the material structures at large scalesComment: references update
Liquid-liquid equilibrium for monodisperse spherical particles
A system of identical particles interacting through an isotropic potential
that allows for two preferred interparticle distances is numerically studied.
When the parameters of the interaction potential are adequately chosen, the
system exhibits coexistence between two different liquid phases (in addition to
the usual liquid-gas coexistence). It is shown that this coexistence can occur
at equilibrium, namely, in the region where the liquid is thermodynamically
stable.Comment: 6 pages, 8 figures. Published versio
Integrated random processes exhibiting long tails, finite moments and 1/f spectra
A dynamical model based on a continuous addition of colored shot noises is
presented. The resulting process is colored and non-Gaussian. A general
expression for the characteristic function of the process is obtained, which,
after a scaling assumption, takes on a form that is the basis of the results
derived in the rest of the paper. One of these is an expansion for the
cumulants, which are all finite, subject to mild conditions on the functions
defining the process. This is in contrast with the Levy distribution -which can
be obtained from our model in certain limits- which has no finite moments. The
evaluation of the power spectrum and the form of the probability density
function in the tails of the distribution shows that the model exhibits a 1/f
spectrum and long tails in a natural way. A careful analysis of the
characteristic function shows that it may be separated into a part representing
a Levy processes together with another part representing the deviation of our
model from the Levy process. This allows our process to be viewed as a
generalization of the Levy process which has finite moments.Comment: Revtex (aps), 15 pages, no figures. Submitted to Phys. Rev.
Polaron features of the one-dimensional Holstein Molecular Crystal Model
The polaron features of the one-dimensional Holstein Molecular Crystal Model
are investigated by improving a variational method introduced recently and
based on a linear superposition of Bloch states that describe large and small
polaron wave functions. The mean number of phonons, the polaron kinetic energy,
the electron-phonon local correlation function, and the ground state spectral
weight are calculated and discussed. A crossover regime between large and small
polaron for any value of the adiabatic parameter is found and a
polaron phase diagram is proposed.Comment: 12 pages, 2 figure
Curve counting via stable pairs in the derived category
For a nonsingular projective 3-fold , we define integer invariants
virtually enumerating pairs where is an embedded curve and
is a divisor. A virtual class is constructed on the associated
moduli space by viewing a pair as an object in the derived category of . The
resulting invariants are conjecturally equivalent, after universal
transformations, to both the Gromov-Witten and DT theories of . For
Calabi-Yau 3-folds, the latter equivalence should be viewed as a wall-crossing
formula in the derived category.
Several calculations of the new invariants are carried out. In the Fano case,
the local contributions of nonsingular embedded curves are found. In the local
toric Calabi-Yau case, a completely new form of the topological vertex is
described.
The virtual enumeration of pairs is closely related to the geometry
underlying the BPS state counts of Gopakumar and Vafa. We prove that our
integrality predictions for Gromov-Witten invariants agree with the BPS
integrality. Conversely, the BPS geometry imposes strong conditions on the
enumeration of pairs.Comment: Corrected typos and duality error in Proposition 4.6. 47 page
Scalar extensions of triangulated categories
Given a triangulated category over a field and a field extension ,
we investigate how one can construct a triangulated category over . Our
approach produces the derived category of the base change scheme if the
category one starts with is the bounded derived category of a smooth projective
variety over and the field extension is finite and Galois. We also
investigate how the dimension of a triangulated category behaves under scalar
extensions.Comment: 15 pages, comments welcom
(Quantum) Space-Time as a Statistical Geometry of Fuzzy Lumps and the Connection with Random Metric Spaces
We develop a kind of pregeometry consisting of a web of overlapping fuzzy
lumps which interact with each other. The individual lumps are understood as
certain closely entangled subgraphs (cliques) in a dynamically evolving network
which, in a certain approximation, can be visualized as a time-dependent random
graph. This strand of ideas is merged with another one, deriving from ideas,
developed some time ago by Menger et al, that is, the concept of probabilistic-
or random metric spaces, representing a natural extension of the metrical
continuum into a more microscopic regime. It is our general goal to find a
better adapted geometric environment for the description of microphysics. In
this sense one may it also view as a dynamical randomisation of the causal-set
framework developed by e.g. Sorkin et al. In doing this we incorporate, as a
perhaps new aspect, various concepts from fuzzy set theory.Comment: 25 pages, Latex, no figures, some references added, some minor
changes added relating to previous wor
- …