139 research outputs found

    Spatial distribution of Chlorpyrifos and Endosulfan in USA coastal waters and the Great Lakes

    Get PDF
    Between 1994 and 1997, 258 tissue and 178 sediment samples were analyzed for chlorpyrifos throughout the coastal United States and the Great Lakes. Subsequently, 95 of the 1997 tissue samples were reanalyzed for endosulfan. Tissue chlorpyrifos concentrations, which exceeded the 90th percentile, were found in coastal regions known to have high agricultural use rates but also strongly correlated with sites near high population. The highest concentrations of endosulfans in contrast, were generally limited to agricultural regions of the country. Detections of chlorpyrifos at several Alaskan sites suggest an atmospheric transport mechanism. Many Great Lakes sites had chlorpyrifos tissue concentrations above the 90th percentile which decreased with increasing distance from the Corn Belt region (Iowa, Indiana, Illinois, and Wisconsin) where most agriculturally applied chlorpyrifos is used. Correlation analysis suggests that fluvial discharge is the primary transport pathway on the Atlantic and Gulf of Mexico coasts for chlorpyrifos but not necessarily for endosulfans. (PDF contains 28 pages

    National Status and Trends Bioeffects Program: field methods

    Get PDF
    Environmental quality indicators provide resource managers with information useful to assess coastal condition and scientifically defensible decisions. Since 1984, the National Oceanic and Atmospheric Administration (NOAA), through its National Status and Trends (NS&T) Program, has provided environmental monitoring data on chemical, physical, and biological indicators of coastal environments. The program has two major monitoring components to meet its goals. The Bioeffects Assessments Program evaluates the health of bays, estuaries, and the coastal zone around the nation using the Sediment Quality Triad technique that includes measuring sediment contaminant concentrations, sediment toxicity and benthic community structure. The Mussel Watch Program is responsible for temporal coastal monitoring of contaminant concentrations by quantifying chemicals in bivalve mollusks. The NS&T Program is committed to providing the highest quality data to meet its statutory and scientific responsibilities. Data, metadata and information products are managed within the guidance protocols and standards set forth by NOAA’s Integrated Ocean Observing System (IOOS) and the National Monitoring Network, as recommended by the 2004 Ocean Action Plan. Thus, to meet these data requirements, quality assurance protocols have been an integral part of the NS&T Program since its inception. Documentation of sampling and analytical methods is an essential part of quality assurance practices. A step-by–step summary of the Bioeffects Program’s field standard operation procedures (SOP) are presented in this manual

    Solar Electric Propulsion Technology Development for Electric Propulsion

    Get PDF
    NASA is developing technologies to prepare for human exploration missions to Mars. Solar electric propulsion (SEP) systems are expected to enable a new cost effective means to deliver cargo to the Mars surface. Nearer term missions to Mars moons or near-Earth asteroids can be used to both develop and demonstrate the needed technology for these future Mars missions while demonstrating new capabilities in their own right. This presentation discusses recent technology development accomplishments for high power, high voltage solar arrays and power management that enable a new class of SEP missions

    Annual variation in the levels of transcripts of sex-specific genes in the mantle of the common mussel, Mytilus edulis

    Get PDF
    Mytilus species are used as sentinels for the assessment of environmental health but sex or stage in the reproduction cycle is rarely considered even though both parameters are likely to influence responses to pollution. We have validated the use of a qPCR assay for sex identification and related the levels of transcripts to the reproductive cycle. A temporal study of mantle of Mytilus edulis found transcripts of male-specific vitelline coat lysin (VCL) and female-specific vitelline envelope receptor for lysin (VERL) could identify sex over a complete year. The levels of VCL/VERL were proportional to the numbers of sperm/ova and are indicative of the stage of the reproductive cycle. Maximal levels of VCL and VERL were found in February 2009 declining to minima between July - August before increasing and re-attaining a peak in February 2010. Water temperature may influence these transitions since they coincide with minimal water temperature in February and maximal temperature in August. An identical pattern of variation was found for a cryptic female-specific transcript (H5) but a very different pattern was observed for oestrogen receptor 2 (ER2). ER2 varied in a sex-specific way with male > female for most of the cycle, with a female maxima in July and a male maxima in December. Using artificially spawned animals, the transcripts for VCL, VERL and H5 were shown to be present in gametes and thus their disappearance from mantle is indicative of spawning. VCL and VERL are present at equivalent levels in February and July-August but during gametogenesis (August to January) and spawning (March to June) VCL is present at lower relative amounts than VERL. This may indicate sex-specific control mechanisms for these processes and highlight a potential pressure point leading to reduced reproductive output if environmental factors cause asynchrony to gamete maturation or release

    Simulation of SEU Cross-sections using MRED under Conditions of Limited Device Information

    Get PDF
    This viewgraph presentation reviews the simulation of Single Event Upset (SEU) cross sections using the membrane electrode assembly (MEA) resistance and electrode diffusion (MRED) tool using "Best guess" assumptions about the process and geometry, and direct ionization, low-energy beam test results. This work will also simulate SEU cross-sections including angular and high energy responses and compare the simulated results with beam test data for the validation of the model. Using MRED, we produced a reasonably accurate upset response model of a low-critical charge SRAM without detailed information about the circuit, device geometry, or fabrication proces
    corecore