883 research outputs found

    Human pathogen shown to cause disease in the threatened elkhorn coral Acropora palmata

    Get PDF
    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch\u27s postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine “reverse zoonosis” involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival

    Human Pathogen Shown to Cause Disease in the Threatened Elkhorn Coral Acropora palmata

    Get PDF
    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch\u27s postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine \u27\u27reverse zoonosis\u27\u27 involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival

    Disease decreases variation in host community structure in an old-field grassland

    Full text link
    Disease may modulate variation in host community structure by modifying the interplay of deterministic and stochastic processes. For instance, deterministic processes like ecological selection can benefit species less impacted by disease. When disease consistently selects for certain host species, this can reduce variation in host community composition. On the other hand, when host communities are less impacted by disease and selection is weaker, stochastic processes (e.g., drift, dispersal) may play a bigger role in host community structure, which can increase variation in structure among communities. While effects of disease on host community structure have been quantified in field experiments, few have addressed the role of disease in modulating variation in structure among host communities. To address this, we conducted a field experiment spanning three years, using a tractable system: foliar fungal pathogens in an old-field grassland community dominated by the grass Lolium arundinaceum, tall fescue. We reduced foliar fungal disease burden in replicate host communities (experimental plots in intact vegetation) in three fungicide regimens that varied in the duration of fungicide exposure and included a fungicide-free control. We measured host diversity, biomass, and variation in community structure among replicate communities. Disease reduction generally decreased plant richness and increased aboveground biomass relative to communities experiencing ambient levels of disease. Despite changes in structure of the plant communities over the experiment’s three years, the effects of disease reduction on plant richness and biomass were consistent across years. However, disease reduction did not reduce variation in host community structure, providing little evidence for ecological selection by competition or other deterministic processes. Instead, disease reduction tended to amplify variation in host community structure among replicate communities (i.e., within fungicide treatment groups), suggesting that disease diminished the degree to which host communities were structured by stochastic processes. These results of experimental disease reduction both highlight the potential importance of stochastic processes in plant communities and reveal the potential for disease to regulate variation in host community structure

    Semiclassical approach to discrete symmetries in quantum chaos

    Full text link
    We use semiclassical methods to evaluate the spectral two-point correlation function of quantum chaotic systems with discrete geometrical symmetries. The energy spectra of these systems can be divided into subspectra that are associated to irreducible representations of the corresponding symmetry group. We show that for (spinless) time reversal invariant systems the statistics inside these subspectra depend on the type of irreducible representation. For real representations the spectral statistics agree with those of the Gaussian Orthogonal Ensemble (GOE) of Random Matrix Theory (RMT), whereas complex representations correspond to the Gaussian Unitary Ensemble (GUE). For systems without time reversal invariance all subspectra show GUE statistics. There are no correlations between non-degenerate subspectra. Our techniques generalize recent developments in the semiclassical approach to quantum chaos allowing one to obtain full agreement with the two-point correlation function predicted by RMT, including oscillatory contributions.Comment: 26 pages, 8 Figure

    Theoretical Insights into Vinyl Derivatives Adsorption on a Cu(100) Surface

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry C, © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.8b06142Here, we present a thorough theoretical study of the adsorption of acrolein (ACO), acrylonitrile (ACN), and acrylamide (ACA) on Cu(100) surface. For this purpose, we have used the density functional theory, imposing periodic boundary conditions to have a correct description of the electronic band structure of the metal and including dispersion forces through two different schemes: the D2 method of Grimme and the vdW-DF. We have found several adsorption geometries. In all of them, the vinyl group together with the amide (in ACA), ciano (in ACN), and carbonyl (in ACO) groups, is highly involved. The highest adsorption energy is found for acrylamide, followed by acrolein and the lowest for acrylonitrile (depending on the level of theory employed ∌1.2, 1.0, and 0.9 eV, respectively). We show that a strong coupling between the π electronic system (both occupied and virtual orbitals) and the electronic levels of the metal is mainly responsible of the chemisorption. As a consequence, electronic density is transferred from the surface to the molecule, whose carbon atoms acquire a partial sp3 hybridization. Lone-pair orbitals of the cyano, amide, and carbonyl groups also play a role in the interaction. The simulations and following analysis allow to disentangle the nature of the interaction, which can be explained on the basis of a simple chemical picture: donation from the occupied lone pair and π orbitals of the molecule to the surface and backdonation from the surface to the π∗ orbital of the molecule (π-backbonding)This work was partially supported by the project CTQ2016-76061-P of the Spanish Ministerio de Economı́a y Competitividad (MINECO). F.A.G. acknowledges the FPI grant associated with the project CTQ2013-43698-P (MINECO). Financial support from the MINECO through the “Marı́a de Maeztu” Program for Units of Excellence in R&D (MDM-2014-0377) is also acknowledge

    Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity.

    Get PDF
    BackgroundThe newly defined superphylum Patescibacteria such as Parcubacteria (OD1) and Microgenomates (OP11) has been found to be prevalent in groundwater, sediment, lake, and other aquifer environments. Recently increasing attention has been paid to this diverse superphylum including > 20 candidate phyla (a large part of the candidate phylum radiation, CPR) because it refreshed our view of the tree of life. However, adaptive traits contributing to its prevalence are still not well known.ResultsHere, we investigated the genomic features and metabolic pathways of Patescibacteria in groundwater through genome-resolved metagenomics analysis of > 600 Gbp sequence data. We observed that, while the members of Patescibacteria have reduced genomes (~ 1 Mbp) exclusively, functions essential to growth and reproduction such as genetic information processing were retained. Surprisingly, they have sharply reduced redundant and nonessential functions, including specific metabolic activities and stress response systems. The Patescibacteria have ultra-small cells and simplified membrane structures, including flagellar assembly, transporters, and two-component systems. Despite the lack of CRISPR viral defense, the bacteria may evade predation through deletion of common membrane phage receptors and other alternative strategies, which may explain the low representation of prophage proteins in their genomes and lack of CRISPR. By establishing the linkages between bacterial features and the groundwater environmental conditions, our results provide important insights into the functions and evolution of this CPR group.ConclusionsWe found that Patescibacteria has streamlined many functions while acquiring advantages such as avoiding phage invasion, to adapt to the groundwater environment. The unique features of small genome size, ultra-small cell size, and lacking CRISPR of this large lineage are bringing new understandings on life of Bacteria. Our results provide important insights into the mechanisms for adaptation of the superphylum in the groundwater environments, and demonstrate a case where less is more, and small is mighty

    Neurophysiology

    Get PDF
    Contains research objectives and summary of research on sixteen research projects.National Institutes of Health (Grant 5 TO1 EY00090-03)National Institutes of Health (Grant 3 RO1 EY01149-03S1)Bell Laboratories (Grant)National Institutes of Health (Grant 5 RO1 NS12307-02)National Institutes of Health (Grant K04 NS00010
    • 

    corecore