
A Classification of Non-liftable Orders for Resolution

Hans de Nivelle,
Centrum voor Wiskunde en Informatica,
PO BOX 94079, 1090 GB Amsterdam,

the Netherlands,
email: nivelle@cwi.nl

Abstract

In this paper we study the completeness of resolution when it is restricted
by a non-liftable order and by weak subsumption. A non-liftable order
is an order that does not satisfy A -< B =? AE> ~ Be. Clause c1 weakly
subsumes C2 if C1 e ~ C2' and e is a renaming substitution. We show
that it is natural to distinguish 2 types of non-liftable orders and 3 types
of weak subsumption, which correspond naturally to the 2 types of non­
liftable orders. Unfortunately all natural combinations are not complete.
The problem of the completeness of resolution with non-liftable orders
was left open in ([Nivelle96]). We will also give some good news: Every
non-liftable order is complete for clauses of length 2, and can be combined
with weak subsumption.

1 Introduction

Resolution is one of the most successful methods for automated theorem proving
in first order classical logic. It was introduced in ([Robins65]). Shortly after its
discovery it was realized that resolution could be improved by adding so called
refinements. Refinements are restrictions of the resolution rule. Refinements
may improve the resolution process in two possible ways. In the case that a
proof exists, a proof will be found more efficiently, i.e. less computer time and
space will be used. Also in the case that a proof does not exist refined resolution
will behave better than unrefined resolution. In particular the search process
may terminate instead of continuing for ever. This results in resolution based
decision procedures. ([Zamov72], [Joy76], [FLTZ93]).
A large class of refinements consists of ordering refinements. In ordered res­
olution the resolution rule is restricted by choosing an order on literals, and
then allowing only the maximal literals in a clause to be resolved upon. Before

337

([Nivelle95]), the completeness of orders satisfying A -< B =} A8 -< Be (the
liftable orders) was known, and little was known about non-liftable orders. (The
main result was [Tammet94]). In ([Nivelle95]) the completeness of a large class
of non-liftable orders was proven, solving some open problems from ([FLTZ93]).
It was proven there that liftability can be replaced by two conditions: Invariance
under renaming, (A-< B =} Ae -< Be, for all renaming substitutions 8), and
descending under substitution. (Ae -< A, whenever Ae is not a renaming of
A) Subsumption had to be weakened, when combined with non-liftable orders.
When C18 ~ C2, the substitution e must be a renaming substitution.
In the case that all literals in each clause have exactly the same set of variables
the second condition of 'descending under substitution' can be dropped.
The motivation for dropping the liftability property is the fact that the liftability
property makes many literals incomparable. For example no liftable order can
compare the literals p(X) and p(s(Y)). Suppose p(X) -< p(s(Y)), then it would
follow that p(s(O)) -< p(s(l)), by the substitution 8 1 ::::: {X := s(O), Y := l}.
In the same way it is necessary that p(s(l)) -< p(s(O)), by the substitution
82 = {X := s(l), Y := O}. It is impossible that p(s(O)) -< p(s(l)) -< p(s(O)),
because -< is an order, and so p(X) -< p(s(Y)) is not possible. In exactly
the same way p(s(Y)) -< p(X) is impossible and hence p(X) and p(s(y)) are
incomparable.
With the results of ([Nivelle95]), it is possible to construct orders which are
total in the following sense: If A and B are not renamings of each other, then
either A -< B, or B -< A. This is the theoretical optimum, since an order which
compares literals that are renamings of each other is ill-defined, because the
theorem prover can freely rename literals.
However after ((Nivelle95)) several important questions remained: Is it possible
to combine full subsumption with non-liftable orders? What happens when the
order is not descending under substitution? The proof method, that was based
on resolution games, suggests that both are not complete.
Counterexamples for the combination of full subsumption with non-liftable or­
ders can be easily found, but it turned out not easy to construct an unsatisfiable
set of clauses, and a non-liftable order -< such that resolution using this order
and combined with weak subsumption does not derive the empty clause. This
led us at some moment to the belief that resolution with every order that is
invariant under renaming is complete. This belief was increased by the proof
that this is true for sets of clauses with length ::; 2, and by experiments with a
theorem prover. However in this paper we show that (probably) resolution with
non-liftable orders and weak subsumption is not complete.
In this paper we will distinguish 2 types of non-liftable orders, weakly and
strongly non-liftable orders. In order to be compatible with non-liftable orders,
subsumption also has to be weakened. We will show that there is one notion of
subsumption corresponding to weakly non-liftable orders, and two types of non­
liftable orders corresponding to strongly non-liftable orders. For most of the
combinations we have counterexamples now. For the remaining combinations

338

we have a candidate counterexample, which is very hard to check, and which
at this point is not yet fully checked. In this paper we will do the following:
(1) We will give counterexamples to the various combinations of non-liftable
orders and subsumption. (2) We will give the right notion of subsumption
that is compatible with the descending orders of ([Nivelle95]). (3) We will give
the proof for the completeness of resolution with non-liftable orders for sets of
clauses with length s 2.

2 Introductory Definitions

In this section we give some basic definitions. We define clauses, the most
general unifier, and we define ordered resolution.

Definition 2.1 Let P be a set of predicate symbols. Let F be a set of
function symbols. The set of terms over Fis the set of objects that
can be obtained by finitely often applying the following rules: A vari­
able is a term. If f E F, and ti, ... , tn are terms, then f(t 1 , ••. , tn)
is a term. If t1, ... , tn are terms, and p E P, then p(ti, ... , tn) and
-. p(ti, ... , tn) are literals over P and F. If the literal is of the form
p(t1 , ••• , tn), then the literal is positive. If the literal is of the form
-. p(t1 , ••• , tn), then the literal is negative. A clause is a finite set of
literals.

The intended meaning of a clause c = { A1 , ... , Ap} is V'V1 · · · Vn (A1 Y · · · Y Ap),
where Vi, ... , Vn are the variables that occur in c. The meaning of a clause is
independent of the variables that are actually used. Because of this we will
assume that variables in clauses can be replaced freely by other variables.

Definition 2.2 The complexity of a term t, which we will write as #t,
is recursively defined as follows: For a variable V, the complexity
#V equals 1. For a compound term f(ti, ... , tn), the complexity
#f(t1, ... , tn) equals 2 + #t1 + · · · + #tn.

Definition 2.3 A substitution is a list which specifies how variables
should be replaced. A substitution has the form

e ={Vi:= ti, ... , Vn := t,..}.

This form prescribes that simultaneously all variables Vi have to be
replaced by their corresponding ti. In order to be meaningful it is
necessary that Vi = V; =? ti = tj.
If Ai and A2 are literals, then Ai is called an instance of A 2 if there
is a substitution e, such that Ai = A20. The literals Ai and A2 are
called renamings of each other if Ai is an instance of A2 , and A 2 is
an instance of Ai.

339

If 61 and 62 are substitutions, then the composition of 6 1 and 6 2

is defined as follows:

If A1 and A2 are literals/ atoms/terms, then a unifier is a substitution

6, for which A16 = A26. A most general unifier, mgu is a unifier

6, such that for every unifier I; there exists a substitution 3, such
that :E = e . 3.

A substitution 6 is called a renaming if for every variable V, the

result Ve is a variable, and V16 = Vi0 implies Vi = V2 •

If two literals have a unifier then they have a most general unifier. There exists

a total algorithm which computes a most general unifier, if one exists. This

was first proven in ([Robins65]). Next we will define an order, and then ordered
resolution and factorization.

Definition 2.4 An order is a relation -<, with the following properties:

Never d-< d. If d1 -< d2 , and d2 -< d3 , then d1 -< d3 .

If S is a set then an element s E S is maximal in S if there is no

s' E S, with s -< s'. If -< is an order then we will write di ::S d2 for

d1 -< d2 or d1 = d2.

Definition 2.5 Let -< be an order on literals. We define ordered resolu­

tion and factorization:

Resolution Let c1 = { A1} U R1 and c2 = {--, A2} U R2 be clauses

(renamed, such that ci and c2 have no overlapping variables),

such that (I) Ai is maximal in ci, and--, A2 is maximal in c2 ,

and (2) Ai and A2 are unifiable, (3) 6 is the mgu of Ai and

A2· Then the clause R1 E> U R26 is an ordered resolvent of R1

and R2 •

Factorization Let c = {Ai, A2 } UR be a clause such that (I) Ai

is maximal in c, (2) Ai and A 2 are unifiable, (3) 0 is the mgu

of Ai and A 2 • Then cE> = {Ai 6} u R6 is an ordered-factor of
c.

In ([Robins65]) resolution was defined slightly different, in such a manner that

the factorization and the resolution rules are combined: If { A1 , ... , An} U R1

and {--, Bi, ... , --, Bm} U R2 are clauses, one of the Ai is maximal, and one of the

--, Bj is maximal, and the A; and Bj have a simultaneous unifier E>, then derive

R 1 0UR2 6. This resolution rule includes the factorization rule. See ((Leitsch88])

for a discussion of this.
The resolution and factoring rule are applied as follows: If one wants to prove

that a formula G is a logical consequence of formulae F 1 , ... , Fp then the formula

340

F1 /\ • • • /\ Fp /\ -, G is unsatisfiable. The formula Fi /\ · · · /\ Fp /\, G can be
transformed into a finite set of clauses C = { c1, ... , Cn}, on which resolution
can be applied.

3 Types of Orders

In this section we will introduce the various types of non-liftable orders, and
the corresponding types of subsumption. In order to make the table complete,
we will also include liftable orders, and full subsumption. Before we can define
the orders we need a definition:

Definition 3.1 Let Ai and A2 be two literals. We call A 1 a weak re­
naming of A2 if Ai can be obtained from A2 by replacing variables
by variables.

So it is not necessary that the replacements are consistent. p(X, Y, Y) is a weak
renaming of p(X, X, Y) and of p(X, X, X), but not of p(X, X, 0).

Definition 3.2 We distinguish the following type of orders:

L Order-< is liftable if A-< B => Ae j Be, for all substitutions e.
WNL Order -< is weakly non-liftable if A -< B => Ai -< Bi for all

weak renamings A 1 of A, and Bi of B.

SNL Order -< is strongly non-liftable if A -< B => Ai -< Bi, for all
renamings A1 of A, and Bi of B.

DESC Order -< is descending if A 1 -< A, for all instances A1 of A,
such that A1 is not a renaming of A.

There are different possible notions of SNL. Another would be: SNL2: A -<
B => Ae-< Be, for all renaming substitutions e. This appears to be a weaker
condition, but it is proven in ([Nivelle95b]), Theorem 7.2.5, that every order
satisfying SNL2 is included in an order satisfying SNL, so for ~-maximal orders
SNL and SNL2 coincide.
We will mostly describe non-liftable orders by summing them up in the following
manner: A 1 -< A2 • • • -< An. Writing this we mean the smallest order of the
intended type, that satisfies the given inequalities.
All types of orders have their own type of subsumption associated with them. In
order to define the type of subsumption that corresponds to descending orders,
we need to define an order on clauses:

Definition 3.3 Let -< be an order. We define the relation jj . Let c1

and c2 be clauses. Then c1 ::S::S c2 if the following holds: Let d1 be
the set of maximal literals of c1 , let d2 be the set of maximal literals
of c2 • Then it must be the case that for every literal A, the number

341

of renamings of A in d1 must be less than or equal to the number of
renamings of A in d2 •

The ordering :j:j can be seen as the standard multiset set order, but ignoring
all non-maximal elements.

Definition 3.4 Clause c1 subsumes clause c2 in one of the manners below
if the following holds: There is a substitution e' such that C1 e i;; C2'

and I c1 I :::; I c2 I , together with the special conditions that belong
to each type:

SUBS (L) There are no more conditions.

SUBS(WNL) For each literal A E c1 , the literal Ae must be a
weak renaming of A.

SUBS(SNLl) For each literal A E c1 , the literal Ae must be a
renaming of A.

SUBS(SNL2) The substitution 0 must be a renaming substitu­
tion.

SUBS(DESC) C2 j~ C1.

The combination of orders of type DESC with subsumption of type SUBS(DESC)
is complete. This we will show in the next section. For the remaining combina­
tions there is the following table:

Table 3.5

II SUBS(L) I SUBS(WNL) I SUBS(SNLI) I SUBS(SNL2)
L yes yes yes yes
WNL no (5.2) no (5.3) no (5.4) unknown(no?)
SNL no (5.2) no (5.3) no (5.4) unknown(no?)

The first row consists of classical results. The problems in the lower right corner
will be discussed in Section 7.

4 Completeness of DESC with SUBS(DESC)
We will prove that the combination of DESC with SUBS(DESC) is complete.
The proof is based on the completeness proof in ([Nivelle95]), for orders of type
DESC with subsumption of type SUBS(SNLI), which was based on the resolu­
tion game. The completeness proof here is a rather straightforward adaptation
of that proof. In fact subsumption of type DESC is strongly suggested by the
resolution game, and naturally occurs when the proof is read carefully.

342

Definition 4.1 Let C be a clause set. A resolution game is obtained by
taking an attribute set A, and a transitive reflexive relation !;;; on A.
We define from !;;;; the relations: a1 is equivalent with a2 if a1 !;;;; a2,
and a2 !;;;; ai. ai C a2 iff a1 !;;;; a2 and not a2 !;;;; ai. This C must be
well-founded. To each literal in a clause of C, an attribute from A
is attached. (Like in lock-resolution [Boyer71]).

Resolution Ifc1 = {a:A1}UR1 andc2 = {-. a:A2}UR2 are clauses,
such that a: A1 is C-maximal in c1, and -. a: A2 is C -maximal
in c2, then R1 U R2 is a resolvent of c1 and c2.

Factorization If c = {a:A1,a:A2 } UR is a clause, such that a:A1
is C-maximal in c, then {a:Ai} UR is a factor of c. (a may be
a negative literal)

Reduction Let c1 be a clause. A clause c2 is a reduction of c1 if the
following holds: Let d1 be the set of C:-maximal literals in c1.
Let d2 be the set of C-maximal literals in c2. Then, for every
indexed literal a: A the number of equivalent literals in d1 must
be not less than the number of literals that is equivalent with
a:A in d2.

So in fact the definition of reduction strongly suggests subsumption of type
DESC.

Definition 4.2 The resolution game is played by two players, the de­
fender, and the opponent. The opponent tries to derive the empty
clause using the factorization and resolution rule. The defender tries
to disturb the opponent by replacing clauses by reductions.

The game starts with the defender. He may initially assign attributes
from A to the literals. After that the opponent may derive new
clauses, using the factorization and resolution rule. However, every
time when the opponent derives a new clause, the defender has the
right to replace it by a reduction, before the opponent can use it.

The resolution game can be seen as resolution with changing orders.

Theorem 4.3 There exists a winning strategy for the opponent if and only if
the initial clause set is unsatisfiable. (A complete proof is in [Nivelle95]).

Theorem 4.4 Orders of type DESC can be combined with subsumption of
type DESC without losing completeness.

Proof: (Sketch) The main idea is to construct a resolution game, such that the
DESC-ordered deduction can be simulated by a strategy of the defender, and
then to apply Theorem 4.3.

343

Let G be a clause set that is unsatisfiable. Let G be a set of ground clauses,
such that each c E G has a clause c E G, such that c is an instance of c. (We
will say that c represents c) Construct the following resolution game:

• A is defined as the set of literals A such that A is an instance of a literal
in C, and A has an instance in G. (The set of in-between literals)

• The order~ is defined as follows: A1 ~ A2 iff A1 -< A2, or A1 is a renaming
of A2. (Note that C is well-founded, because the set of in-between literals
that are not renamings of each other, is finite)

• The initial clause set of the resolution game is obtained by replacing each
clause { a1 , .•. , ap} represented by {Ai, ... , Ap}, by the indexed clause
{a1:Ai, ... ,ap:Ap}·

Now it can be checked that a resolution derivation, based on C, using the order
-< can be simulated by the following strategy of the defender:
Every time a new indexed clause is derived, reduce the attributes in such a
manner that the result is the clause that would be derived from G, using -< .
If the result is replaced by a subsuming clause, then reduce to this subsuming
clause.
Because of Theorem 4.4, the empty clause will be derived using this strategy.
Then from this derivation of the empty clause a -<-ordered refutation of C can be
extracted by replacing each indexed clause { ai: A1 , ... , ap: Ap} by {Ai, ... , Ap}.

5 Counter Examples

In this section we will present a series of counterexamples, showing that various
combinations of non-liftable orders and subsumption are not complete. The
counterexamples in this section are all based on the following propositional
example:

Example 5.1 Take the following clause set:

{p, q}, {q, r }, {r,p}, {..., p,..., q}, {..., q,...., r }, {-i r,-, p}, {-i p,p}, {-i q, q}, {-i r, r}

If a refinement prefers the first literal in the first three clauses, and it prefers
negative over positive literals, then the empty clause can not be derived. Nev­
ertheless the first 6 clauses together are inconsistent.

Example 5.2 We will show that orders of type WNL are not compatible with
SUBS(L), even if the order satisfies DESC, and the clauses have exactly the
same set of variables. Let the clause set be:

{p(.X"),q(.X")},{q(.X"),r(.X")},{r(O),p(O)},

344

{ • p(X),-.., q(X)}, { • q(X),-.., r(X)}, { • r(X),-.., p(X)}.

Let the order -< be defined from: If A is a positive literal and B is a negative
literal, then A -< B. Among positive literals -< is defined from the following:

q(O) -< p(O) -< r(O) -< r(V) -< q(V) -< p(V).

The only new positive clause that can be derived equals {p(O), q(O) }. However
this clause is subsumed SUBS(L) by the first clause, and is not kept. It is easily
checked that the clause set is unsatisfiable by substituting 0 for X.

Example 5.3 The combination of orders of type SNL with SUBS(WNL) is not
complete.

{p(X, Y),q(X, Y)}, {q(X, Y),r(X, Y)}, {r(O, Y),p(Y, Y)},

{ • p(X, Y),-.., q(X, Y)}, { • q(X, Y),-.., r(X, Y)}, { • p(X,X),-.., r(Y, X)}.

Let -< be defined from: If A is a positive literal, and B is a negative literal, then
A -< B. Among positive literals -< is defined as follows:

r(V, V) -< q(V, V) -< p(V, V) -< r(O, V).

The only new positive clause that can be derived is {p(X, X), q(X, X) }. However
this clause is SUBS(WNL)-subsumed by the first clause.

The following example proves that the combination of an SNL-order with SUBS(SNL2)
is not complete. It is obtained from the previous example by replacing every
positive literal s(X, Y) by a pair s1 (X, A), s2 (A, X).

Example 5.4 The combination of an SNL-order with SUBS(SNLl) is incom­
plete.

The order is defined from: If P is a positive literal, and Q is a negative literal,
then P -< Q. Among positive literals -< is defined from: r 2 (X, Y) -< r 1 (X, Y) -<
qz(X, Y) -< q1(X, Y)-<
pz(X, Y) -< P1 (X, Y) -< r2(0, Y) -< r 1 (0, X).

345

6 Clauses Consisting of Two Literals

In this section we prove that orders of type SNL can be combined with sub­
sumption of type SUBS(SNLl), when the clause set consists of clauses with
length at most 2. We will call such clauses 2-clauses. The proof is almost the
same as the completeness proof for clause sets where the literals in each clause
have exactly the same set of variables. The proof is based on the fact that it is
possible to attach a measure to each clause. When two clauses resolve the new
clause will receive a measure that is not higher than each of the parent clauses.
When a literal changes, it changes at the moment that it is copied as a side
literal into a clause with a lower measure. Using this fact, a resolution game
can be constructed, by including this measure into the attributes. Then, when
a literal appears to increase under the order, it in fact decreases, because the
measure decreases. First note that the set of 2-clauses is closed under resolution
and factorization:

Lemma 6.1 Let ci and c2 be clauses with I ci I :'.S 2, and I c2 I :'.S 2. If c~ is
a factor of c1 , then I c; I :'.S 2. If c' is a resolvent of c1 and c2, then I c' I :'.S 2.

We will define the measure for clauses:

Definition 6.2 Let c be a 2-clause, representing c. The connectivity ofc
is defined as follows:

1. If c is of the form {Ai, A2} and c is of the form { ai, az}, the
connectivity ofc is obtained as follows. Let e be a substitution,
such that Ai e = a1 and A2 8 = a2. Let V1 , •.• , Vn be the
variables that are shared by A1 and A2. The connectivity of c
equals #Vi 8 + · · · + #Vne.

2. If c is of the form {Ai, A2 }, and c is of the form {a}, then the
connectivity of c is defined as 0.

3. If c is of the form {A}, and c is of the form {a}, then the
connectivity of c is also defined as 0.

Example 6.3 If {p(X, Y), q(Y, Z)} represents {p(O, s(O)), q(s(O), s(s(O)))}, then
its connectivity equals #s(O) = 4. The connectivity of {p(X, Y), q(Z, T)} equals
0, independent of the clause that is represented. The connectivity of
{p(X, Y), q(X, Y) }, representing {p(O, 0), q(O, 0)} equals #0 + #0 = 4.

We will show that this measure decreases through the derivation. First we prove
that it decreases in ordinary resolution, when both clauses are of length 2.

Lemma 6.4 Let c1 = {a, bi}, and let c2 = {--. a, b2}. Let c = {A1 , Bi} repre­
sent ci, and let c2 = {A2 ,B2} represent c2. Then the connectivity of {b1 ,b2},
represented by {B1 ,B2} is not more than the connectivity of ci, and not more
than the connectivity c2 .

346

Proof: Assume that c1 and c2 have no overlapping variables, without loss of
generality. Let e be the most general unifier of --, Ai and A2 • Let E be a
substitution for which Bi'L. =bi, B 2 E = b2 , and Ai8:E =a. The construction
of the resolvent takes place in two steps:

1. First {Ai,Bi} is replaced by {A18,Bi8}, and {A2,B2} is replaced by
{A28,B28}.

2. Then the resolvent {B1 , B2} is constructed.

We show that, for both i E {1, 2}, the connectivity of { Aie, Bie} S the con­
nectivity of {Ai, Bi}, representing {±a,bi}·
Let Vi , ... , Vn be the variables that are shared by A; and Bi. Let Wi , ... , Wm
be the variables that are shared by Aie and Bie. We have Wi L. + · · · + W m'L. S
Vie E + · · · + Vn e L., because of the following argument: Every Wi must occur in
one of the Vj 8, otherwise e would not be most general. The different Wi must
occur at different positions in the Vj8. Because of this the W;L. are disjoint
subterms of the Vj0. For this reason the complexity of the W;I: together must
be lower than the complexity of the Vj8L. together.
Now we prove 2. Let X i, ... , Xp be the variables that are shared by Bi 8 and
B2 8. For both i E {1, 2}, these variables must be shared by A;8 and B;8,
since otherwise 8 would not be most general. Then #Xi'L. + · · · + #Xp'L. s
#Yi'L. + · · · + #Yq::E, because every X; is a Yj.
End of proof

Lemma 6.5 Let ci = {Ai,A2 } and c2 = {Bi,B2} be clauses representing the
same ground clause {bi, b2}. If ci subsumes SUBS(SNLl) c2, then the connec­
tivity of ci is not more than the connectivity of c2 .

Proof: Let e be a substitution such that A1 e =Bi, and A2 8 = B 2 , Let L. be a
substitution such that Bi'L. =bi, and B 2 E = b2 . Let Vi, ... , Vn be the variables
that are shared by Ai and A2 • Every variable Vi is replaced by a variable Vi8,
because all Vi occur in A1 , and Ai e is a renaming of A1 .

There are no Vi and Vj, such that i =f. j, and v;e = Vje. This is because v; and
Vj occur in Ai, and Ai e is a renaming of Ai.
Then because all the ViE> are separate variables, shared by Ai 8 and B 1 e, the
connectivity cannot increase.
End of proof
The previous lemma is definitely not true for SUBS(WNL). On this fact Exam­
ple 5.3 is based. The clause {p(X, Y), q(X, Y)} (representing {p(O, 0), q(O, 0)}
) subsumes SUBS(WNL) {p(X, X), q(X, X)}, but the connectivity of the first
clause is 4, and the connectivity of the second clause is 2.

Theorem 6.6 Resolution, using an order of type SNL is complete for 2-clauses,
and compatible with subsumption of type SUBS(SNLl).

347

Proof: Let C be an initial clause set that is unsatisfiable. Let -< be an order of
type SNL. There is a set of ground clauses C, that is unsatisfiable, and such that
each c E C is represented by a clause c E C. Construct the following resolution
game:

• A is defined as the set of pairs (n, A), where n is a natural number, and
where A is a literal, such that A is an instance of a literal occurring in C,
and A has a literal occurring in C as an instance.

• The order!;;:; is defined as follows: If n 1 < n2, then (n1,A1) i;;:; (n2,Az). If
n1 = nz and A1 -< A2, then (n1 , A1) !;;:; (n2, A2)· If n1 = n 2 , and A1 is a
renaming of A2 , then (n1 ,A1) !;;:; (n2,A2).

• The initial clause set of the resolution game is obtained by replacing every
clause {a1, a2 } in C, represented by {Ai, A2}, by a clause {a1: (n,A1), a2: (n,Az)},
where n is the connectivity of {A1 ,A2}.

The relation C is well-founded on A, because it is the composition of two well­
founded orders: < on the natural numbers, and -< on the set of literals that have
an instance in C, and are instance of a literal in C. The latter is true because
this set is finite modulo renaming. Similar to the situation in Theorem 4.4 it is
possible to define a strategy of the defender, such that a -<-ordered refutation
of C can be extracted from it.
End of proof
At this point we can explain the examples of Section 5. SUBS(L) can not be
combined with non-liftable orders, because replacing a 2-clause by a SUBS(L)­
subsuming clause may increase the connectivity. (See Example 5.2). Replacing a
2-clause by a SUBS(WNL)-subsuming clause may also increase the connectivity.
(See Example 5.3).

7 The Combination of SNL and SUBS(SNL2)

In this section we discuss the problems in the lower right corner of Table 3.5. We
do not know for certain whether or not the combination of orders of type SNL
with subsumption of type SUBS(SNL2) is complete, but we consider Exam­
ples 7.3 and 7.4 likely candidates for counter examples. The proof in Section 6
essentially needs the fact that the clauses are of length 2. The point where the
proof fails is in factorization. The problem there is that it may increase the
connectivity in clauses that have a length greater than 2. We will explain the
problems using Example 7.2. First we give the propositional basis for Exam­
ple 7.2.

Example 7.1 Consider the following clause set:

348

If a refinement always prefers the first literal in the positive clauses, and always
prefers negative literals over positive literals, then the empty clause will not be
derived. However the first positive clause together with the negative clauses,
are unsatisfiable.

Example 7.2 Consider the following clause set:

{ a1, bi}, {b1, a2(X),p(X)}, {p(X),p(Y), a2(X), b:z(Y)}, {a2(X), b2(X) }, {b2(0), bi},

{-. ai,p(X), a2(X)}, {-. bi,p(Y), b2(Y)}, {-. ai,.., a2(0)}, {-. b1,.., b2(0)}, {-.p(X)}.

The order -< is defined as follows: If A is a positive literal, and B is a negative
literal, then A-< B. Among positive literals-< is defined as follows:

b2(X) -< a2(X) -< p(X) -< b1 -< a1 -< b2(0) -< az(O).

Ifwe are forced to factor p(X) andp(Y) in the clause {p(X),p(Y), a2(X), b2(Y)},
then the empty clause can not be derived. However it is possible not to factor,
and to derive {a2(X),b2(Y)} instead of {a2(X), b2(X)}.

Example 7.2 shows that factorization can increase the connectivity. In the
example the connectivity between a2(X) and b2(Y) is increased by factorization.
Here factorization can be easily avoided. However it is possible to construct
examples in which this is not possible, and the need for factorization brings us
into real problems: They are obtained by adding a copy of the initial clause set,
replacing a by c, b by d, and p by q. Then a clause {-. p,.., q} is added. In order
to derive a clause without p and q it is necessary at some moment to factor on
p, or on q.

Example 7.3 The clause set is:

{a1(X), bi(X)}, {a2(X, A), b2(X,A)}, { c1(X), di(X)}, { c2(X, A), d2(X, A)},

{-. ai (X), a2(X, A),p(A)}, {-i b1 (X), b2(X, B),p(B)},

{-. c1 (X), c2(X, A), q(A)}, {.., di (X), d2(X, B), q(B)}, {.., p(X),.., q(X)},

{.., a1 (X),.., az(O, X)}, {-i bi (X),.., bz(O, X)},

{-. c1(X),--. c2(0,X)},{--. di(X),-. d2(0,X)}

The order is defined from: A -< B if A is positive, and B is negative, and

d2(X, Y)-< c2(X, Y) -< bz(X, Y) -< a2(X, Y) -< q(X) -< p(X) -< d1 (X) -<

c1(X)-< bi(X)-< a1(X)-< d2(0,X)-< c2(0,X)-< b2(0,X)-< a2(0,X).

349

Example 7.4

{a1(X), b1(X)}, {a2(X, A), b2(X,A)}, {c1(X),d1(X)}, {c2(A, X), d2(A,X)},

{-i a1(X), a2(X, A),p(X, A)}, {-i b1(X), ~(X,B),p(X, B)},

{..., c1(X),c2(A,X),q(A, X)}, {-i d1(X), d2(B,X),q(B,X)}, {-.p(X, Y),-.q(X, Y)},

{-. a1 (X),--. a2(X, O)}, {-i b1 (X),--. ~(X, O)},

{-i c1 (X),..., c2(0, X)}, {-i d1 (X),--, d2 (0, X)}.

The order is defined from: A -< B if A is positive, and B is negative, and

d2(X,A)-< c2(X,A)-< ~(X,A)-< a2(X,A)-< q(X,A) -<p(X,A)-< d1(X)-<

c1(X)-< bi(X)-< a1(X)-< d2(0,X)-< c2 (0,X)-< ~(X,O)-< a2(X,O).

Both examples are based on the same principle: In order to derive the empty
clause it is necessary to eliminate the p and q literals. In order to do this they
have to be factored, and this generates a situation similar to Example 7.2.

We have made some tests with a theorem prover, and collected app. 100000
minutes of CPU-time for both examples, without coming near a situation from
which the empty clause could be derived, so this can be taken as evidence that
the examples are indeed counter examples, but we do not posses a conclusive
argument that the empty clause cannot be derived from these examples.

8 Conclusions

The combination of the resolution game and connectivity is the right approach
for dealing with non-liftable orders, because we can explain the examples with
them: If the connectivity decreases then the refinement is complete, if the con­
nectivity can increase then the refinement is not complete.
If at some moment it would turn out the combination of orders of type SNL
with SUBS(SNL2)-subsumption is complete after all, then this would be of little
practical value, because these orders do obviously not increase the efficiency of
the search process.
Checking Examples 7.3, and 7.4 with a strong theorem prover has high priority.
A problem here is that the standard theorem provers do not support weak
subsumption and non-liftable orders.

References

[Boyer71)

[ChangLee73)

[FLTZ93J

[Joy76]

(Leitsch88]

[Lovelnd 78)

[Nivelle95)

[Nivelle95b]

[Nivelle96)

[Reynolds66]

[Robins65]

[Tammet94]

(Zamov72]

350

R.S. Boyer, Locking: A Restriction of Resolution, Ph. D.
Thesis, University of Texas at Austin, Texas 1971.

C-L. Chang, R. C-T. Lee, Symbolic logic and mechanical the­
orem proving, Academic Press, New York 1973.

C. Fermiiller, A. Leitsch, T. Tammet, N. Zamov, Resolution
Methods for the Decision Problem, Springer Verlag, 1993.

W.H. Joyner, Resolution Strategies as Decision Procedures,
J. ACM 23, 1(July1976), pp. 398-417.

A. Leitsch, On Some Formal Problems in Resolution Theorem
Proving, Yearbook of the Kurt Godel Society, pp. 35-52, 1988.

D. W. Loveland, Automated Theorem Proving, a Logical Ba­
sis, North Holland Publishing Company, Amsterdam, New
York, Oxford, 1978.

Resolution Games and Non-Liftable Resolution Orderings, in
CSL 94, pp. 279-293, Springer Verlag, Kazimierz, Poland,
1994,

H. de Nivelle, Ordering Refinements of Resolution, Ph. D.
thesis, Delft University of Technology, 1995.

Resolution Games and Non-Liftable Resolution Orderings,
the Annals of the Kurt Godel Society, 1996.

J. Reynolds, Unpublished Seminar Notes, Stanford Univer­
sity, Palo Alto, California, 1966.

J .A. Robinson, A Machine Oriented Logic Based on the Res­
olution Principle, Journal of the ACM, Vol. 12, pp 23-41,
1965.

T. Tammet, Seperate Orderings for Ground and Non-Ground
Literals Preserve Completeness of Resolution, unpublished,
1994.

N .K. Zamov: On a Bound for the Complexity of Terms in the
Resolution Method, Trudy Mat. Inst. Steklov 128, pp. 5-13,
1972.

