2,000 research outputs found

    Classical world arising out of quantum physics under the restriction of coarse-grained measurements

    Full text link
    Conceptually different from the decoherence program, we present a novel theoretical approach to macroscopic realism and classical physics within quantum theory. It focuses on the limits of observability of quantum effects of macroscopic objects, i.e., on the required precision of our measurement apparatuses such that quantum phenomena can still be observed. First, we demonstrate that for unrestricted measurement accuracy no classical description is possible for arbitrarily large systems. Then we show for a certain time evolution that under coarse-grained measurements not only macrorealism but even the classical Newtonian laws emerge out of the Schroedinger equation and the projection postulate.Comment: 4 pages, 1 figure, second revised and published versio

    Requirements for a loophole-free photonic Bell test using imperfect setting generators

    Full text link
    Experimental violations of Bell inequalities are in general vulnerable to so-called "loopholes." In this work, we analyse the characteristics of a loophole-free Bell test with photons, closing simultaneously the locality, freedom-of-choice, fair-sampling (i.e. detection), coincidence-time, and memory loopholes. We pay special attention to the effect of excess predictability in the setting choices due to non-ideal random number generators. We discuss necessary adaptations of the CH/Eberhard inequality when using such imperfect devices and -- using Hoeffding's inequality and Doob's optional stopping theorem -- the statistical analysis in such Bell tests.Comment: 11 pages, published versio

    Platelet transfusion can mimic somatic mtDNA mutations

    No full text

    Mitochondrial DNA mutations in renal cell carcinomas revealed no general impact on energy metabolism

    No full text
    Previously, renal cell carcinoma tissues were reported to display a marked reduction of components of the respiratory chain. To elucidate a possible relationship between tumourigenesis and alterations of oxidative phosphorylation, we screened for mutations of the mitochondrial DNA (mtDNA) in renal carcinoma tissues and patient-matched normal kidney cortex. Seven of the 15 samples investigated revealed at least one somatic heteroplasmic mutation as determined by denaturating HPLC analysis (DHPLC). No homoplasmic somatic mutations were observed. Actually, half of the mutations presented a level of heteroplasmy below 25%, which could be easily overlooked by automated sequence analysis. The somatic mutations included four known D-loop mutations, four so far unreported mutations in ribosomal genes, one synonymous change in the ND4 gene and four nonsynonymous base changes in the ND2, COI, ND5 and ND4L genes. One renal cell carcinoma tissue showed a somatic A3243G mutation, which is a known frequent cause of MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis, stroke-like episode) and specific compensatory alterations of enzyme activities of the respiratory chain in the tumour tissue. No difference between histopathology and clinical progression compared to the other tumour tissues was observed. In conclusion, the low abundance as well as the frequently observed low level of heteroplasmy of somatic mtDNA mutations indicates that the decreased aerobic energy capacity in tumour tissue seems to be mediated by a general nuclear regulated mechanism

    Multiplex primer extension analysis for rapid detection of major European mitochondrial haplogroups

    No full text
    The evolution of the human mitochondrial genome is reflected in the existence of eth- nically distinct lineages or haplogroups. Alterations of mitochondrial DNA (mtDNA) have been instrumental in studies of human phylogeny, in population genetics, and in molecular medicine to link pathological mutations to a variety of human diseases of complex etiology. For each of these applications, rapid and cost effective assays for mtDNA haplogrouping are invaluable. Here we describe a hierarchical system for mtDNA haplogrouping that combines multiplex PCR amplifications, multiplex single- base primer extensions, and CE for analyzing ten haplogroup-diagnostic mitochondrial single nucleotide polymorphisms. Using this rapid and cost-effective mtDNA geno- typing method, we were able to show that within a large, randomly selected cohort of healthy Austrians ( n = 1172), mtDNAs could be assigned to all nine major European haplogroups. Forty-four percent belonged to haplogroup H, the most frequent hap- logroup in European Caucasian populations. The other major haplogroups identified were U (15.4%), J (11.8%), T (8.2%) and K (5.1%). The frequencies of haplogroups in Austria is within the range observed for other European countries. Our method may be suitable for mitochondrial genotyping of samples from large-scale epidemiology stud- ies and for identifying markers of genetic susceptibility

    Severe depletion of mitochondrial DNA in spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromus- cular disorder in childhood leading to a dramatic loss of muscle strength. Functional investigations with high-reso- lution polarography and enzyme measurements of the res- piratory chain revealed lowered activities in muscle tissue of SMA patients. To gain a better understanding of this low energy supply we analyzed the amount of mitochon- drial DNA (mtDNA) in skeletal muscle of 20 unrelated children with genetically proven SMA and 31 controls. Quantitative Southern blot analysis revealed a severe and homogeneous decrease in the content of muscle mtDNA in relation to nuclear DNA in SMA patients (90.3±7.8%), whereas by immunofluorescence no decrease in the num- ber of mitochondria was detected. In addition, a two- to threefold reduction of the nuclear-encoded complex II (succinate dehydrogenase) activity was detected in SMA muscle tissue. Western blot analysis showed a significant reduction of both mitochondrial- and nuclear-encoded cy- tochrome c oxidase subunits. Our results indicate that mtDNA depletion in SMA is a consequence of severe at- rophy, and has to be differentiated by measurement of complex II from an isolated reduction of mtDNA as found in patients with mitochondriocytopathies and the so- called mtDNA depletion syndrome

    Quantum Histories and Quantum Gravity

    Full text link
    This paper reviews the histories approach to quantum mechanics. This discussion is then applied to theories of quantum gravity. It is argued that some of the quantum histories must approximate (in a suitable sense) to classical histories, if the correct classical regime is to be recovered. This observation has significance for the formulation of new theories (such as quantum gravity theories) as it puts a constraint on the kinematics, if the quantum/classical correspondence principle is to be preserved. Consequences for quantum gravity, particularly for Lorentz symmetry and the idea of "emergent geometry", are discussed.Comment: 35 pages (29 pages main body), two figure

    PanGEA: Identification of allele specific gene expression using the 454 technology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Next generation sequencing technologies hold great potential for many biological questions. While mainly used for genomic sequencing, they are also very promising for gene expression profiling. Sequencing of cDNA does not only provide an estimate of the absolute expression level, it can also be used for the identification of allele specific gene expression.</p> <p>Results</p> <p>We developed PanGEA, a tool which enables a fast and user-friendly analysis of allele specific gene expression using the 454 technology. PanGEA allows mapping of 454-ESTs to genes or whole genomes, displaying gene expression profiles, identification of SNPs and the quantification of allele specific gene expression. The intuitive GUI of PanGEA facilitates a flexible and interactive analysis of the data. PanGEA additionally implements a modification of the Smith-Waterman algorithm which deals with incorrect estimates of homopolymer length as occuring in the 454 technology</p> <p>Conclusion</p> <p>To our knowledge, PanGEA is the first tool which facilitates the identification of allele specific gene expression. PanGEA is distributed under the Mozilla Public License and available at: <url>http://www.kofler.or.at/bioinformatics/PanGEA</url></p

    Experimental delayed-choice entanglement swapping

    Full text link
    Motivated by the question, which kind of physical interactions and processes are needed for the production of quantum entanglement, Peres has put forward the radical idea of delayed-choice entanglement swapping. There, entanglement can be "produced a posteriori, after the entangled particles have been measured and may no longer exist". In this work we report the first realization of Peres' gedanken experiment. Using four photons, we can actively delay the choice of measurement-implemented via a high-speed tunable bipartite state analyzer and a quantum random number generator-on two of the photons into the time-like future of the registration of the other two photons. This effectively projects the two already registered photons onto one definite of two mutually exclusive quantum states in which either the photons are entangled (quantum correlations) or separable (classical correlations). This can also be viewed as "quantum steering into the past"
    corecore