801 research outputs found

    The Sisters Of Columbia And The Sons Of Uncle Sam

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5427/thumbnail.jp

    Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

    Full text link
    Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors [1-4]. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic field (T-H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure

    Excitonic photoluminescence linewidths in AlGaAs grown by molecular beam epitaxy

    Full text link
    The linewidths of excitonic transitions were measured in AlxGa1−xAs, grown by molecular beam epitaxy as a function of alloy composition x for values of x≲0.43 using high resolution photoluminescence spectroscopy at liquid helium temperature. The values of the linewidths thus measured are compared with the results of several theoretical calculations in which the dominant broadening mechanism is assumed to be the statistical potential fluctuations caused by the components of the alloy. An increase in the linewidth as a function of x is observed which is in essential agreement with the prediction of the various theoretical calculations. The linewidths of the excitonic transitions in AlxGa1−xAs observed in the present work are the narrowest ever reported in the literature, for example σ=2.1 meV for x=0.36, thus indicating very high quality material.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70175/2/APPLAB-48-11-727-1.pd

    Ecometabolomics for a better understanding of plant responses and acclimation to abiotic factors linked to global change

    Get PDF
    The number of ecometabolomic studies, which use metabolomic analyses to disentangle organisms' metabolic responses and acclimation to a changing environment, has grown exponentially in recent years. Here, we review the results and conclusions of ecometabolomic studies on the impacts of four main drivers of global change (increasing frequencies of drought episodes, heat stress, increasing atmospheric carbon dioxide (CO) concentrations and increasing nitrogen (N) loads) on plant metabolism. Ecometabolomic studies of drought effects confirmed findings of previous target studies, in which most changes in metabolism are characterized by increased concentrations of soluble sugars and carbohydrate derivatives and frequently also by elevated concentrations of free amino acids. Secondary metabolites, especially flavonoids and terpenes, also commonly exhibited increased concentrations when drought intensified. Under heat and increasing N loads, soluble amino acids derived from glutamate and glutamine were the most responsive metabolites. Foliar metabolic responses to elevated atmospheric CO concentrations were dominated by greater production of monosaccharides and associated synthesis of secondary metabolites, such as terpenes, rather than secondary metabolites synthesized along longer sugar pathways involving N-rich precursor molecules, such as those formed from cyclic amino acids and along the shikimate pathway. We suggest that breeding for crop genotypes tolerant to drought and heat stress should be based on their capacity to increase the concentrations of C-rich compounds more than the concentrations of smaller N-rich molecules, such as amino acids. This could facilitate rapid and efficient stress response by reducing protein catabolism without compromising enzymatic capacity or increasing the requirement for re-transcription and de novo biosynthesis of proteins

    Label-Free, Flow-Imaging Methods for Determination of Cell Concentration and Viability

    Get PDF
    To investigate the potential of two flow imaging microscopy (FIM) techniques (Micro-Flow Imaging (MFI) and FlowCAM) to determine total cell concentration and cell viability. B-lineage acute lymphoblastic leukemia (B-ALL) cells of 2 different donors were exposed to ambient conditions. Samples were taken at different days and measured with MFI, FlowCAM, hemocytometry and automated cell counting. Dead and live cells from a fresh B-ALL cell suspension were fractionated by flow cytometry in order to derive software filters based on morphological parameters of separate cell populations with MFI and FlowCAM. The filter sets were used to assess cell viability in the measured samples. All techniques gave fairly similar cell concentration values over the whole incubation period. MFI showed to be superior with respect to precision, whereas FlowCAM provided particle images with a higher resolution. Moreover, both FIM methods were able to provide similar results for cell viability as the conventional methods (hemocytometry and automated cell counting). FIM-based methods may be advantageous over conventional cell methods for determining total cell concentration and cell viability, as FIM measures much larger sample volumes, does not require labeling, is less laborious and provides images of individual cells. PURPOSE METHODS RESULTS CONCLUSIONDrug Delivery Technolog

    The invisible enemy : Understanding bird-window strikes through citizen science in a focal city

    Get PDF
    Bird-window collisions have been estimated to be among the most important sources of bird death. Despite increasing knowledge in Latin America, our understanding of this phenomenon is still incipient, with research performed in Mexico limited to a handful of studies. Here, we present the results of a citizen science effort focused on bird-window collisions at seven buildings in the university campus of the National School of Higher Studies (ENES) of the National Autonomous University of Mexico, located in the city of Leon (central Mexico). Our main goal was to describe seasonal patterns of bird-window collisions and their relationship with building traits (i.e., building height, window area) through citizen science monitoring strategies. Our results showed that collisions were higher in two of the seven studied buildings, with two bird species recording almost half of the total collisions: Clay-colored Sparrow (Spizella pallida) and Indigo Bunting (Passerina cyanea). Seasonally, April was the only month to differ from the rest of the studied months, showing significantly higher rate of bird-window collision. Regarding building traits, only building height was related to the number of recorded bird-window collisions. In sum, our study provides findings from an understudied area, showing the value of citizen science approaches to generate knowledge on a deadly phenomenon. Notably, besides the potential drawbacks and importance of generating this kind of information, our project raised awareness on the topic across the entire campus community, from the students and academics to the administration, highlighting the potential for social impact with these kinds of projects.Peer reviewe
    corecore